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LEAST WORK ANALYSIS. OF THE PROBLEM OF SHEAR LAG

x

IN BOX BEAMS

By Francis B. Hildebrand and Brie Reissner =~ =77 = -

SUMMARY. . ! T T e e T

The distribution of stress in the cover shests of
thin-wall box beams is analyzed, with regard to the ef-

fect of shear deformation in the cover sheetls, by the T ‘;
method of least work. _ _ G e

Explicit results are obtalined for a number of repre-
sentative cases that gshow the influence of the follow1ng
factors on the stress pattern: o : e

1. Variation of stress in spanwise direction as
glven by elementary beam theory. _ ST e
2. Value of a parameter called shear lag aspect'""" S
ratio which designates the product of. spafi-width ratio of T R
the beam and of the square root of the ratiec of effective ~ -
shear modulus.and tension modulus of the cover sheets.--_

S T e b p

3. Value of ratio of cover.sheet’ etlffness to side-'__ )
web stiffness. ; : - sl

4. Variation 'of beam height in span direction.
5. Variation of beam width in span direction. .

6. Variation of cover-sheet thickness in;span direc~ ..
tion. . - e R R

General contlusions are drawn frem the results nb—_ oL
tained. Among them the most important one appears to Be = -

the fact that the shear-lag effect depends primarily on _ -
the following two quantlties. Rt o

1. the value of the shear-~lag aspect ratlo. N
2. the shape of the curve representing the product of RN

the stress of elementary beam theory and of the cover-sﬁeet
thickness. : - :
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The basic relations of the theory are presented 1in a
form convenient fer the fistermination of additional solu-~
tions.

While the main body of the work is concerned with
the analysis of cantilever beams, there are also given sesx-
amples of solutions for beams on two simple supperts and
for beams with statically indeterminate suppert. In the
former case very simple apProximate solutions are ob-
tained for problems previously solved by exact methods.
In the latter case, which has not been trsated previously,
it is found that not only the stress dlstribution dut also
the moment distribution of the elementary bean theory ls
modified by shear lag.

INTRODUCTION

Eurther applicstions and extansions of a méthod given
by—onwe of the authors {(references 1-and 2) for the deter-
mination of-—shear lag in thin-wall box beams subjected to
bending leads (fig. 1) are presented in this paper. The
problem is that of determining tha distribution of stress
in the cover sheets of bex beams when the shear deforma-
tion of the cover sheets is taken ‘into account.

With regard to clesed box beams the treatment is re-=
stricted to beams of doubly symmetrical rectangular cross
section, it being understood that slight deviations from
symmetry cause only slight deviations of the shear-lag
pattern from that of the symmetrical beam. It is shown,
however, that by simply modifying the definition of one
of~the pmarameters occurring in the. anralysis the develap-
ments sre also applicable to the 1imiting case of asymms-
try when one of the two ccver sheets 1is entlrely missing.

Part I of this work deals w1tn shear lag in canti—
lever beams with ene end fixed. By use of the bastec
equations, which have been derived in reference 2, ex-
plicit expressions are obtained for the gtresses in the
cover sheets. With the help of thase expressions, the
influence c¢f the shaps of the load curve and the influence
of the creass-sec¢tional characteristices of the beam on the
shear~lag pattern are analyzed. In particular, informa-
tion is obtained on the effsct of height width, gnd cover-
sheet thickness ftaper. ' For a number of typiéal conditions,
the results are evaluated numerically and are rsepresentsd
in form of diagrams.
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In part II of this work the application of the basic
equations of the theory to beams on two simple end sup-
ports 1s indicated, sand a few such solutions are given
although presumably they are of importance only for other

than aeroaautical applications. . . - B

The case of a beam with two fixed ende is considered
as an exampls of beams with statically undeterminate sgup-
port in part III of this paper. In this case, which to the
authors! knowledge has not been treated before, 1t is
found that not only is the transverse distribution of
stress affected by shear lag but also the spanwise distri-
butlon of bending moments is modified 1f shear deforma-
tion of the cover ghests is taken inte asccount.

Finally, explicit reference is made to the wark of
Kuhn and Chiarito (reference.3) in which spproximate solu-
tions of shear-lag problems are obtained by means =T a
method that is based on stronger simplifying assumpticns
than tkose made for the least-work method.

This investlgation, conducted at Massachusetts Insti-
tute of Technology, was sponsored by, and conducted with
financial assistance from the National Advisory Gommittee
fer Aeronautics. '

. SYMBOLS ST

Oy cover—~sheet bending stress of elementary beam theory

Mh .t . _ . . . —
Iz ' '

M bending moment N

h height of beam - -

I moment of inertia of beam (I, + Ig)

Iw principal moment of inertla of two side webs includ—

ing flanges

I, . moment of inertia of two cover sheets abcut transverse
C beam axis S i

o spanwise normal stress in caover shsets

L

,7 rectangular coordinates in plane of’ cover'sheets;
x (spanwise)- megsured from tip to root, ¥y (trans-
verse) measured from middle line %o sdge of sheet
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stiffness parameter _<§£ﬂj;_lﬁ> %
nalf width of beam

functicn glving effect of shear deformability of
cover sheet [ox(=x, w) - ox (x,0)]

cover—sheoet thickness

distance of centroid of side webs from plane of
cover sheetl

i

area of two side webs

transverse normal.stress .-

1

modulus of rigidity

Young'!s modulus

developed half width . : |
number of-egqually spaced longitudinals of area A ' ) -
effective sheet width -

length of beam for cantilever; half length of beam
with beth ends supported,

h

. N « ' X
dimensionless span coordingte (T“ .
e .

dlstance from origin of coordlnate system to root
of .cantilever beam

ratio of height of beam to height of beam at root
<fL), called height funetion
R ’ :
root helght of beam
ratlio of cover-sheet thickness to cover-sheet thick=
ness-at root (*—) called thickness functicn ) .
cover-~sheet thickness at root of beam

ratio o6f width of beam to width of beam at root
( > called width function
¥R
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half of root width of beam

-
bending-moment functien (7;3)

- elementary bending stress at roob

o
shear-lag function ( -O—.-'>
o]

stiffness parameter at root sectio

dimensionless coordingts of tip se

le fBG-

auxlliary parameter
WR E

section

n

ctlen

__55m -

21

auxiliary parameter V//

variable of integration

35m° - 42m 4+ 15

@dimensionless coordinate of po{nt of concéntrated

losd application

distance of center of gravity of
root of bheam

uniferm lmad

concentrated load

ratio of successive cover-shest th
particular integral of diffesrentia
constants of integration

exponent in width-taper law
auxiliary parameter (./ mA® - 1)
exponents

constants of integration

constants of integration

bending moment st root section

exponsnt in shest-thickness-taper

(TF)" curve fronm

icknesses <—‘

1 equation

law
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fy:85585 584 ... cOafficionts

Me

bending moment according to elementary

beam theory {equal to
ally doterminateée beams)

Subscripts:

4

left

right-

at root section
geqeral case numbers
particular

mgXimun

concentrated load

at tip section

11}

for staiic.

T+

bl

m
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~

I -~ DISTRIBUTION OF STRESS IN THZ CQVER SHEETS ) -
OF CANTILEVER BOX BZAMS

BASIC BQUATIONS USED IN SOLUTION OF PROBLEM

In reference 2, box beams with rectangular doudbly
symmetrical cross section acted upon by given distridu-.
tiens of bending moments were treated (fig. 1). A para-
bolic transverse distribution of the cever—sheet normal

stresses Ox was assumed ’ . T

ox(x,y) = op(x) - <—§- - -g;) s(x) (1)

oy (x) = M=) nlx) (2)

is the cover—-sheet stress” of elementary beam theory,
obtained when the shegr deformabllity of the sheets i3
disregarded. The function _ -

s(x) = op(x,w) - .crx(x,o) . (3)

is a measure for the effect of the shear deformabiiity-

of the sheet, and the value of the psrameter - .

31, +

Iw +

n = 8, 1<mn<3 . - (4a)
I
8 . - .

insures that the state of stress in thse beam dus to the
superposition of s(x) does not give rise to a resultant
moment about the neutral axis of the cross section.

If the neutral axis of the cross section is not at
the same timd an axis of geometrical symmetry, then in
general the stress in the twe cover sheets will be gliven

- by two different ansglytical expressions. An exception is

formed by the limiting case of asymmetry of a beam with .
open cross section consisting of two side webs and cne

cover sheet. In this case the cover-sheet normgl stress -
is given by one expression of the form of equation (1)

with the parameter m defined by s

N



8 NACA Téchnical Note No. 893

. Iw
31, + 2tw e,® |1 + —2% .
Oy Ay .
m = : I (49) .
I+ 2tw o ® [1 + —X¥ fa
w w ( ewaAw -

v

where now Iw is the princilpal mement of insrtia of the -

two side webs, A, 1is their area, and e, is the distance

of "their centroid-from the plane of the cever sheet. This
result is established by means of the condition of moment
equilidbrium in the form given by equation (12) in refer-
ence 4. . Co :

With the help of this result, it is established that
1f one cover sheet of a doudbly symmetrical section is
removed shear lag in the remaining cover cheet is very
1ittle medified. This permits the conclusion thatalse
in the intermediate case of two unequul cover shests the
analysis of the danbly symmetrical section leads to rele-
vant results. ) , ' .

The shear stress in the sheets corresponding to the
normal stress of equation (1) is determined from equi-
librium conditiens. "The functisn s(x) ie determined by *
minimizing the internal work of .the bYeam (in the work ex-
Pression the work of the transverse normal stresses oy

being disregarded, which amounts to the assumpbtipsn that—
the sheet is riglid transveraely). In this way, as has
been shewn in reference 2, a differentlial equation and
boundary conditions for & .are feund. The differential
equetlon for s(x) 4is of the form

-

e )

ax |t ax B35m - oL ax |t ax

6C & a1 4
- = =] = = t o 5)
E w? ax [t ax ¢ b)} (

where t 1s the sheet thickness, w 15 one-half the
gsheet width, and G/E 1is the ratic of effective shear .
modulus and Young's modulus for the material. -

For flat unstiffened and unwrinkled sheets the value -
of G/B will be 3/8. For flat unstiffened shesets, -
wrinkled because of shear, the value of G/E is generally
assumed to be somewhat smallser than that for the unwrinkled
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sheet. The same ls trus for corrugated sheets where
¢/E = (3/8) (w/wg) 41f wy; 1is the developed half width
for flat sheet-corrugated sheet combinations, and for
sheets stiffener by n (say n > 5), equally spaced lon-—

gitudinals of area A where (G/E) = (3/8) 2wt/(2wt + nt).

The boundary conditions for s(x) are of the follow-
ing form:

At the free end of the beam,

be =0 e

At the fixed end of the bean,

s
'

a 2lm ~
s a—; ("GS) - —g'g;—:—— dx ( = 3 — ('bC"b-) w (7)

In addition, it 1s useful to have conditisns for the case
when at some section of the beam a discontinuous change

of section prcperties take place, with or without simulia-
neous application of a concentrated lead at this secticn.
If the values of quantities immediately to the left or
right of the section are -indicated by subscripts 1 and

r, the following transitien conditions are found:
tl Sz = tI‘ SI‘ . (8)
m, d 2lm,-15 1 4 849N 3 a
——-——-(tzsz) -l yE ( i 1) - ——-———(taab 1)
t; dx $86my-21 “r ax W ¥ dx ’
ty -
m,, 4 2lm,.~-15 w@ 4 .8 3 a4
= £ — (trsr) ———E;--——~——-< z I-‘> -— — (tp0 ) (9)
t,. dx Sbm,.-21 tr dx w tr 4x !

Equation (8) expresses the condition of continulty of the
sheet normal-stress resultants and equation (9) 4is the
condition of continuity of the spanwise displacelént com-
ponent, in the form required by the least-work method.
Equation (38) corrects and generaliges a corresponding
equation mentioned in a foofnnte in reference 2. T

The shear-lag problem s now reduced %o the solution
of equations (5) to (9) and to the substitution of the
results in equation (1).
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From equation (1) an expression for the effective
sheet width Weff is obtained in the form

W . _
Weff _ o o (x,¥) a5 .1, Bog (x,0) (10)
w W Oy (x,w) 3 3 oxl(x,w)

which is valid at those sections where ox(x,w) > gx(x,0).
Bquation (10) can alse be written in the form

1 - m=1 _s(x)

off _ 3 Oplx) (10a)

v 1+ <1 -2 —E%E%
3 oy ix

Fér the eldge and center sheet stresses in equation
(10), follows from equation (1)

o.(x,0) " op(x) m sfx) (ll).
(1) T o (1) T B oy (1)

oglx,w) o (x) ooy s(x)

oy (1) - Oy (2) <1 3) oy, (1) (12)

The applicatien of the preceding set of basic equa-
tlions to a series of representative cases and the conclu-~
sions drawn frem these applications form the body of the
following developments.

Before prqceeding:to examples, -1t has been found

helpful %o introduce dimensionless variables of a kind ex-
plained in the following paragraph.

DIMENSIONLESS FORM OF THE BASIC EQUATIONS

Write

E = {i : S (13)
o -

H(E) (14)

it

b
hy
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T(E) = % (15)

wig) = % (18)

F(E) - -‘I—g—(-’f-)— - (17)
) o : R

) = 2K qe)
o

6o = (0y) (19)

In equations (13) to (19) it is understood that 1, rep-

resents the span ! of the beam, if its cross section is
uniform, and that in the case of tapering cross section

le 1e the "extended" span, that is, the distance from

the orlgin of the coordinate sgystem to the recot of the

beam of length 1, and the origin is chosen according to
the simplicity of the analytical expressions for W or T
or both. Oy 1s the value of the elementary bending stress

at the root gection.

1
It is convenient to represent L F(f) 4in equation (¥6)
in the following way. From

ob(x) = %-%. I =I, +1I,,1I, = hetw, m = (SIw + is)/I
follows T
(£) = 8 - m M(x) o
4 htw
and conseqqutl&
¥(E) = M(E) 1 3 - m (20)

MR E(E) T(E) W(E) 3 - mg

where M(f) 1is the moment distribution as function of the
dimencsionless span coordinate.

. Intrdéduecbion of. the .dimensionless variables into the
differential equation (5) leads to
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d.{1 4 2lm - 15 .3 4 Tf
—_— = 2 (m - —— W
iy [T it f)] 47m - 21 [T 3 w3>J

6G i1 4
( ) R [E T (TF)} (21)

The boundary and transition cenditions become, if ¢ = §,

1s the coordinate of the free end and { = 1 48 the coor-
dinate of the fixed end, : ) -

T(te) £(E,) = O ~(22)
2lm-15 .=
R0 - BER S (GD -5 (TF)JE o (28
=1
T,f, = T.f, _ (24)

my 4 o\ 2lmy-15 W° a4 ,T,f 3 4

TZ d.g 421111-21 Tl. dg
ny 4 ( 2lmy-15 W 4 ('r .
=2r & (qp ¢ 2iBp=29 )-.___ 7. ¥ 5
r 0f T r) - 42mp~21 Ty af (Pr¥z) (28)

The stresses of equations (11) and (12) and the effective
width as given by equation (10) now have the form

-"li’-ﬁ;’—‘—’.lw(g) -2 () (26)
o S

Og(x,w) F(E) + (1.~ ;) £(¢)
and
m—l.f<§>

: 7 . B=1 2rEJ
Werf Bﬁx(xy0> 3 F(¢)

1
w ) E * de(f.W) ) i o+ (1 - %) %%%%

It is useful to have the fellowing simple result with
regard to the superpositlon of shear-lag solutions. To

(27)

-
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superimpose the stresses due %to a moment distribution
M (&) and a moment distribdution My(f£) for which Fyp, ¥

and £,
written as

f, are known, F corresponding to M, + M, 1is

Mp (L) Fnp(t) + M, (L) Fn<€)
My (1) + Mp(1)

Fm,n(g) =

Because of the linearity of the problem, there follews
also

Mp(1) £,(8) + Muy(1) 2£,(8)

(1) W, (1) (29)

fm,n(g) =

BEAMS WITH UNIFORM CROSS SECTION
EFFECTS OF LOAD DISTRIBUTION, OF WIDTH-SPAN RATIO, AND
OF CROSS-SECTIONAL CHARACTERISTICS

Develnpment of Equations

With
EH=W=T=1, 1 = lg ' (30)

the differential equation and boundary conditions reduce
%o -

2 3., R -
r .

d i -kt = 83 & - (31)
at ' at )
f(o) = © . (82)

af 3 ¢F:
4 _ 3@ &4 =0 (233)
(dg dié:l o :

where .
= - : .G 18 L
>\2 = 25111 21 : s - K.a = 6 — ( 7\2 (34)
35m° -~ 42m + 15 B O\w

The transition conditions while still utilizable to obtain

(28)

]
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the Bolutlon for concentrated loads are not essential in
this case since concentrated loads can conveniently be
considered as limiting cases of distributed lgads. The
general solutisn of the system of equations (31) to (33)
has the form ’

1

£f(8)= SEZ{ZSinh ® g.['_ﬁ"(:l.) - /p cosh k(1-m) F'(7N) &n]
IO

cesh ¥ .

4 :
+ ./n sinh & (E-1) Fr(n) dﬂ} (35)
o

and in particular, if  F'(o) = O,

1
3A8 /Psinh E - sinh K T

: o F1(n) an (36)"

£(1) =
o
In extension and partial recapitulation of the work
in reference 2, the shear~lag functiemns f corresponding
to the following basic leading conditions may be glven.

1, Uniform lozding

Fi(f) = £° (37)
2. Lozding increaéing linearly from tip to root
Fo(t) = £3 (38)
3. Concentrated load at-&m peint ¢§,,
<(o. 0t <,
Fo(B) = bt : (39)
_"'_—g'l gcégsl
1-¢, .

Subscripts sre used here and throughou#~the present paper
te identify cases treated explicitly. '

3y evaluation of equation (35),

£.08) = Giz (cosh k(1-f) + k sinh Kk £ l} (40)

L cesh K
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£ (E) = 187\ { 1 _g) sinh & £ _ . -(‘_l_l)

- cosh K

3\° cosh k(1-8a) = T (4iynkg, £ <t
% (1-¢,) cosh &k ¢

—(42)

B3N8 1 cosh k(l-Efc)-1 | ]
K 1=t [Sinh K(ﬁiﬁc) : cosh Hc stah g.

ic < g. '-'z a K B

£, (€)=

In particular, at the fixed and_where; as has been stated
in reference 2, the effective width is in general small-
est,

=) o
£,(1) = 62 | tamh ok - L & L (40a)
K. e K cnsh K
9N 2 o 2
£,(1) = = [(1 +-F> tanh Kk - E] (412)
GA2 1 sinh Kk £,
= K- —™m———
£, (1) T ToE, l:tanh Py (42a)

In reference 2 an approximate exXpression was given for
f(1) which led to the theorem that, for beams of uniform

. w
cross section, the ratis (—iii>R is approximately pro-

portional %to % wﬁere L 1is the dlstance of %he center

of gravity of the F"(f{)-curve, which for beams of unifoerm
cross section coincides with the load curve, fram the fixed
end of the beam. This appreximgte result is also obtained
by putting the contents of the brackets in equations (40a)
to (42a) egual to 1. While this result Is sufficlently

. accurats ‘for large values of K (say K > 12) it leads
for.smaller values of K to an underestimation of the ef-
fective width., Thé general result referred to appears to
be the first statement of the fact that the amount of

shear lag depends on w/L rather than en W/Z

The general formula, which may be queted here for
completeness, was

. E w - . e ——
W 1 - (m-1)A hud S
( :ffz _ sc;i (43)
1 + (3-m)A T
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Evidence will be presented later that, in the general case

of tapering beams, an equivalent result can be stated with -

the same degree of approximation if L refers to the _

(TF)"-curve and w beéomes wp - <
e

Numerical Examples

In order to obtain a quantitative idea of the resulte,

a beam has been taken for which (SG/E)l/E(l/W) = 7.5; so0
that, when G/E = 3/8, the beam is two and one-half times
as long ae wilde. It is further assumed that the side webs
and cover sheets centribute equally to the total stiffness,
80 that m = 2, On the basls of these data, the stress
distribution has been calculated for

(1) = uniformly distridbuted load
(2) a linearly distributed lead
(3a) a concentrated tip load . ~

(3b) a concentrated load at mlidspan -

Disgrammatical sketches of these and af. all other problems
treated numerically in this work are given in figure 2.

Throughout the rest -of the present paper, individual
strees dlagrams will be described only by the case number
of the problem designated beneath each sketch of figure 2. *
In all the stress diagrams, B refers to the stress of
the elementary theory of bending, B +to the actual edge
stress, and M to the actual stress along the middle ttne
of- the sheet. : ’ -

-

In order to obtain the resulits the values of-the aux-
iliary parameters A- and K, which are defined by equa-
tiwn (34), A = 0.690, K = 6.231, are first calculated; -
the funetion f£(f) 1is then calculated according %o equa-
tions (40) to (42). If these values are introduced with
the simple expressions for F(f) into equation (26), the

values of the normal stresses along the edge and along the -t
center line of the cover sheetsrars ohtained. The results
are glven numerically in table I apnd as disgrame in figurs ’ .

3. These diagrams show clearly how shear lag dependes = . . = _.
greatly on the shaps of the load curves, since the maximum
stresses in the four d&ifferent cases are 11, 18, 24, and 21
percent higher than those given by eleméntary beam theory.



‘e

NACA Technical Note No.. 893 17

Concerning the effect of m = (B3I, + I4)/I, an aver-
‘age value ih the practical range (I, = I4) has been

chosen for the calculation of the curves. Calculations in
reference 2 indicate that shear lag decreases with incresas-
ing m and vice versa; in other words, the mere appreci-
able the contribution of the cover shest to the total
gstiffness of the beam, the more appreciable is the shear
lag. The magnitude of this effect in the range 1.5 < m
< 2.5, (0.25 < (Ig/Iy) < 0.75) 4is, hawever, sufficisnbtly

R small to permit working with the average value =m = 3.

In teble II values are given of the effective width
at the built-in end for the thrae ldading cases, cencen-
trated tip load, uniform load, and linearly increasing

load, as functions of the ratie %%%-T and alsoc as
functions of the ratio ./ ;;ﬁ g In this comparison it is
assumed that m = 2. The quantitative effect of a varia-

tion of the stiffness parameter m is investigated by
) w S :
calculating —%§i>R _ for. the concentrated tip-load case

with m = 1.5 and = 2.5, The rssults gare plotted in

figure 4 as functions of %. They show that in fact

<z%ii>R for the case of a concentrated tip lsad gives a

n

. . w
slightly conservative estimate cf (—%§i>a for other

load conditions and that the effect of a variaticn 72f m
is small.

Case of a Sine Moment!Gurve

As a further example of a shear 1ag problem for a beam )
with uniform cross section, a case considered by Younger
(reference 5) is taken and analyzed within the frame of
thlis theory. The dlmensinnless elementary bending-stress
function is given by

f4(§) = sin%ﬁ : (44)
From
Fr{E£) = %-cos % tE, TU(E) = ;af sin %—ﬁ (45)

1t follows that the 1¢sding in this case consists of a

concentrated load at the free end and of a distridbuted load
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having a resultant of equal magnitude and opposite direc-
tion ag the concentrated load. {That the two load sys-
tems balance esch other follows from the fact that

Fo'(1) = 0). '

.2

Since it had been shown that “shear lag is qulte sen~-
sitive with regard to changes in 1load distridbution, 'this -
load case may behave with regard to shear lag rather dlf~-
ferently frem the three typlcal cases considered previously. -

The solution of the shear-lag equations (31) to (33) —
is obtained for Fa in an especially simple. form. By
substituting BN F," in equation (31), a particular solu- - -

tion-1s found in the form

3 - .
- 53& = sin % ¢ (46)
+
T

£,(8) =

end i1t so happens that thls particular solution satlsfles
already the boundary conditiens given in cquations (32)
and (33) and therefore represents the complete solution. r.

The stresses of equation (26) become here —

co_(x,0) CERAY '
f—’!—;——=(1~ z )sinzf,. (47)

o} \ 1 + (%ﬁ) 2
b
: o 1 4 (ﬂ)e 2
v

0
A comparison of this solution numerically wilth the corre-
sponding eolutlions for the other logding cases shows,

. _ 3
with m =2, N = 0.690, K = 6.231, ——2—— = 0.041
- ()

that the increase in maximum stress as given by equation
(48) amounts to only 4 percent as compared with increases
between 11 and 24 percent for the other loading conditions. L]

Case o6f s Sine Beries Moment Curve £

A more general load condition, that is, ane which can

be mads to represent all load conditiocons, 1s obtalned by
assuming S . . S
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=]

T
Fs (E) =
s (8) = ) | :
n=o . _ . '
The introduction of equation (49) inta the differential
equation (31) sgives S R

N A
£ (¢) = 3R Z _ 2 sin (2041) TL (50)
n=o > * () =/ '

The convergence of the series of equation (50) is, however,
clow; whereas one of the advantages of tho least-work meth-
od is that it permits avoidance of such series develop- o
ments, which in an exact theory are the only knewn meals
of representing the solution.

Ls an example for the determination sf the coeffi-
cients, the case of a concentrated tip load may be con-
cidered where TF(E) = £ and where convergence is still
better than, for instance, in the uniform or linear load
case. The Fourier develepment of F(E) = ¢ is obtalned
from

1 . -

/q ¢ sin (2m+l) % £ 4a¢

*

1
Q0
=§Z Anu/q sin (2m+1) % ¢ .sin (2m+1) %;g at
o .

sin (2m+1) % 1
= — A
2 m

L(2m+q) %Ja ' . B

in the form

= 2 sin (2n+l) = ' R
¢ = Ez - — ?-sin (2n+1) % £ ) (52)
- .

L(2n+l) %]

and, consequently,

@

62 ( us S
£(E) = ;; sin ZZfl) 2 sin (2n+l1) % ¢ (53)

o [(2n+1) g] + K2

Ap sin’ (2n+1) %’E (e9)
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The convergence of equatiopn (53), while rapid for small.
values of f, ©becomes slower when ¢ sapproaches unity.
In order to show that the solution actually represents

the concentrated load case, 1t 1s necessary to show that

1im F'(E) = 1, 1im F'(t) = 1
f—= o0 f—1 :
where Z 2 sin (2n+1) I
gin n+ —
1 T 2 Ll
F (ﬁ) = zz (2041) % Icos (2n+1) p) § (54 )

This series, every term of which vanishes when £ = 1,
has the required properties when 1t 1s recsagnized that
the series, representing the function F'(f) = 1 1in the
interval O < £ <1, Jumps at the point § = 1 and rep-
resents F!'(f) = -~ 1 4in the interval 1 < £ < 2.

Example of the Application of the Buperposltion Principle

The application of the superposition equations (28)
and (29) is shown by consldering a beam with unlform lead

p, and a concentrated load -P, 'at theé section x = x,.
The moment functions are
12 o
-1 3 Po 2 .
My (E) = 2 po x7 = G- £% (55)

rO, x < Xg

My (E) =4 R (5€)
o L_PO (x-x,) = —sz'(ﬂ—ﬁc), X< X
snd it follows in accordance with equatilan (28) that
PR _
M OIS SIS ENG
F1)3(£) = - .Lz B
P . .
N - PQJ‘ (l"gc>
7(1) - Zol=ted g )
= - _,_I_,."’ / (57)

P, (1-tgo)
pol/z

»
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where F,- and ¥z are defined by equationé (37) and (39).
In accordance with equation (29),

£, (8) To (t; ~£o ) £, (E)
£ (&) = 2 : (58) o
1,3 L . Eo {1-¢,) _ |
) o | ' o

If, for a numerical example, as before,

n = 2, . K = 5.231
and . o . ) . -
_ P . _
= 0.8, = 0.5 —
e Pol _

then, with the case 3b for a concentrated load at midspan,

1,30 2, - Esb (59)

fi1,3p = 2y - £ ap

From table I, the values of F and of f are obtained
and, by 1ntroduc1ng these values into equations (26) for
the stresses, a stress pattern is cbtained as=g1ven 1n
figure 5.

ZFFECTS OF TAPER IN HEIGHT FOR OTHERWISE

UNIFORMlCROSS SECTION

The only difference between the case of beams with
taper in height and the case of beams without taper is
that, in equations (5) and (7), o0y is medified and, in
equation (20), the varlabllity nf H(E) .has-to. be taken ’ -
into account. Thus, for givean F(E) 'and E(t), the mo- '
ment function is given by R C=

e e A

Otherwise the entire theory for the beam with uniform
cross section can be directly applied.
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In addition to the results of the preceding sectioen,
which can be interpreted in this place by equation (60),
the case has been calculated in which the height tapers
linearly according to the law

H(E) = —2— (1 + &) (61)

so that the tip height is one-half the root height. OCon-
centrated tip load and uniformly dlstributed load have
been sssumed. Then, according te eguation (60)

5, (¢) = r%:E"g ' (62)
and 2 . .
F(¢) = Ist? - (63)

The shear-lag functions f({) as given by equation (35)
btecome
1

-y
_ 32 [ ginh v & |1 cosh k¥ (1-1) .
fe = K { cosh K [5 * 4u/ (1 + m° &t
0 .

4
-4 / sinh k (£-7) dﬂ}- (64)

(L + m3
and °
[y - : 1 3
32 | ginh k £ 3 cosh Kk (1-7)
f / © 8
7% TR L ceosh K 2 4f (1 + 1m)3 an
0 B
', (¢-1)
+ 4 ainh K (E-T) 4n (65)
h/P (1 +m)3®
o
The functions f and f have been determined again

8 o4
with the following values of the parameters

gg_l m_ S ; o ) -
v/ oy - 7.5, m = 2, K = 6.231

The integrals occéurring in equaticns (64) and (65) have
been evaluated by means of Simpscn'!s rule. The resultant

» 4

e |
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stress Gistribution is given in table III and in figure 6,

A comparison of these results with the results fer a
beam with the. same load distribution but with no taper in
height (figs. 3(a) and 3(c)). shows that the maximum stresse
increases are reduced from 11 to 63 percent and from 18
to 15 percent owing to the variability of E({) and the
subsequent change of shape of the F-curve.

P

EFFECTS OF DISCONTINUOUS CHANGES IN COVER-SHEET THICKNESS

Beams with constant width and plecewise constant csver-
sheet thickness and web stiffness are considered in this '
section. For every bay with censtant T and m the dif-
ferential equation (31) applies and for the tip and root
sections the boundary conditions of equations ?32) and
(33) apply: At a section where T and m change the
transition conditions of equations (24) and (26) occur, and
equation (25) simplifies b3

d o o 2 'y _ & . B '

T (£, - 8,7 F)) = it (£, - 3A, _Fr) (66)
The procedurs for obtaining the explicit solutioen

may be exemplified for bYeamn consisting of twe bays, one

tip Pay of length 1; and sheet thickmess %; and one

rsot bay of length 1, and sheet thickness %5. We as-

gsume that the stiffness parameter m and therewith A

and K Thave the same values in both bays.

The thickness function is

{%, — L

T(E) =<4 - (87) ~
111 glé gs 1 ’ R
and, according to equation (20), — |
M(E) 1 :
F(E) = —ﬁé"'ﬁﬂﬁff (68)
If
2.8 (69)
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the system of equatiens to be solved becomes.

acr ' ' MY (E) '
a'gg'- k2 £, = 33 ™ 5, o< E< g, (70) .
a®r M (E) _ '
y g: - k2 fr = 3N —EE—— y E,_I N ¥ (71)
£,(0) = 0, £,'(1) = 3N\° Eﬁéﬁl (72,73)
£,06,) =8 £.(¢,) (74)
B(E,) : MI(E,)
£5008,) - BN® ——MR——I— = £ (k) - 37\2.—%11— (75)

For the solutlon of the system of squations (70) to (75),
the %eneral solutions of the differential equations (70)

and (71) should be first written in the form
2
£, =8 87— (4, sizh k € + By, cosh K £ -4 D
. Aa s
£ =3 (Ar sinh K € + B, cosh & ¥ + p(§)> (77)

According to equations (72), €73), (74), anda (75), the
following conditions serve to determine the constants ef
integration;

By + p(o) = 0 : (78)

. , .
N (4y cosh k + B, simk K + E—iil> = n HA (79)
K R i

A, sinh K £, + B, cosh K £, = & sinh Rf1+Br ecoshk €y (80)

r

6{:[A3 cosh kK £ "B; sinh K t+ p'(§1)] _ MU(E4)
. K MR

={ [Ar coghac§1+-3; sinhﬂ4§¥+ P'&ff)] - M'iél)}~ (61)
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Equations (76) to (81) are evaluated for three cases
of concentrated tip load and of uniformly distributed
load as follows: . . . - - ST o

. , , S R 1 (
Case | m K | 5 ll. ‘p(E) Mﬁ)
3 R

8 2 |- -6.281 |- 2 0.5 | 0 ¢

. : S 6 \°

. : - a

9 2 6.231 2 .5 < 4
10 “i 2 | 6.231 2 | .9 ] '“;Egi L

For the shear-lag functions £ ‘therémis obtained

0.02141 sinh 6.231¢, 0 < t € 0.5 -
g 2.37789 cosh 6.231¢-2.37657 sinh 6.331f, 0.5 E<1
~0.18990 sinh 6.231£+0,21%34 cosh 6.231f -
. ' ' -0.21233, 0< £ £ 0.5 C77)
2 -2.40681 sinh 6.231£+2.40944 cosh 6.231¢ - -
~-0.10667, 0.5 < £ €1 '~
~0.20671 sinh 6.231£+0.21333 ccsh 6.281¢ ) T
£ = ' -0.21333, 0< £ € 0.9

" i " (78)
10 ~20.15981 ginh 6.231£+20.16258 cosh 6.231¢ o
~0.10667, 0.9 € £ < 1

"The functions f corresponding to equations (76) %o
(78) have been calculated fer various values of { and
from equatinns (26) the corresponding stresses have been
calculated. Table IV and figure 7 contaln the results.

It should be noted that, instead of the stresses themselves,

the stress resultants T =~ have beqn'plotted:__Thus:_in
order %o obtain the stresses from figures 7(a), 7(b), and
7(c) the parts of the curves in the first bay have to be
5 : '
magnified by a factor Eé-a 2. - It is seen that, in the
R : - - - .
cases of equal bay length, the thickhess change has almost
no effect on the stresses at the fixed end; while, in .
the gextreme case of the very much shbrter. root bay, there

is a noticeable effect with an increase of 21 instead of
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18 percent for the corresponding beam with uniform crose

section (fig. 3(a)). As is to be expected, an appreclabdle

shear-lag effect occurs near the btransltion section and it

is seen that the percentage of stress Increase is as high

as the corresponding increamse at the root section, -
EFFECTS OF LINEAR TAPHER IN .WIDTH

Development of Hquaticns
The theory is developed in this section for beams in
which the width -varies linearly while the cever-sheet '
thickness ig assumed to be uniform. The theory can dbe ap-
plied to problems in whlch the sheet thickness is plece-
wigse uniform by means of the transition conditions of
equations (24) and (25).
The more genersal taper law
v o= 3 (71)
is first introduced into differential equation (21) with
T = constant (80) ~

There is then obtained the differential equatian

' .
£ 4+ 4%¥®%g %f - 2Y3q (2¢+1) f% - K2 :%E = 33 o (61)

which, for any value of g, can be integrated in terms of
Bessel functions. Of the constants occurring in squation
(81), N and Kk are.defined in equation (34) and

v® = mn - 1 ' ~ (82)

The conditions at the free end.and at the fixed end
follow from equations (22) and (23) in the form

£ () =0 | (83)

£1(1) + 297¥°£(1) = B Pr(L) (84)

Fer the transition ccndltions, there fcllows frem

-
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equations (24) and (25)

T,f; = Tnf, (24)

and

£,0 + 297,78, -8 P = £+ 207 %, - BN F, (85)

In the case of linearly tapering width for which
q-= 1

" the differential equation (81) takes a form which can be
integrated by ar expressican of the type ) :

£(¢) ; 3%2 [clgél - c, ¢ + p(&)] : (86)

n

where 3K2p(§) is a particular integral and the remain-

der the general solutjion of the homogeneous equatlon T

The substitution of equation (86) in (81) gives the ex-
- ponents . L . _ oL

n, = % - ov* +/%. + 4mY2A% 4+ KB (87&) —
1 1 )
ng, = T - 2v? —/— + 4m,Yz_>\2 + Ka_ ) . (87%)
2 4 ,
and the function
na F"(n) an - F"(m an
p(t) = <t g —ET (88)
nl—na . n
In pafticular, if F can be expressed in the form
then ‘
-1y . v ~
(¢) = Z v - a (90)
P =), o) (mpio) 2 6 IS

By the intreduction @f the Bolutien (86) into the



28 NACA Teoclnical. Note Ho. 893

boundary conditions of equations (83) and (84), the follow-
ing equations that determine the constants c¢; and cg
are obtained

Cy &il - ¢g 522 =~ p(fy) (91)
(n,+2Y%) e = (n +2Y%) e, = Pr(1)- [pf(l) + zYap(15] (92)

In the case in which a concentrated load is applied
at a section ¢ = ¢t it is convenient to proceed gs

c’
follows: Let

[’3>\a {pz(ﬁ) + ¢y ﬁnl '- Cz gnz} §°S§$§ te
£(E) =< ' n '

|\37\a [Pr(ﬁ) + dy gnl - dg gz} E <t (93)

c

Equations (83), (84), (24), and (85) then take the form ¢

cy gil ~ cp 222 =-~fpz(§o> L (94)

(8-0,) £ < (ag-cp) £°7 - [p;<gc> - Pz(gc)] (95)
n, ' ng
Caymeydnybot (agmeydnyt™® o € [FZ'(EC)"Fr'<§c)]
| v, [prey) - pr'(ﬁb)J (s6)
(ny+2Y%) a1~ (nz42Y") 3, = FF(l)l-[§r5(1)-+273pr(1)] (97)

The evaluation of equations (94) to (97) 1s best accom-—
Plished by first solving squations (95) and (96) for

d; - c3 and d; - ¢z and then determining the constants
themselves from equaticns (94) ana (97).

F¥umerical Examplés

Beams with cdncentrgtad tip IHad_(dééeé 11 tg l4).~-

The following values of the Parameters are chosen for cases
11 to 1l4: : ‘ T

-
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@

. faar™ .
From equations (34) and (82), /
» = 0.6901," Y2 = 0.3803, K° = 155.2817

and from equatiecn (87)
n, = 12.2946, =np = - 12.8157

Also, since

MCE) | £ -
My 1

-g-o.-:zg;’ls W.= gs T =

it follows from equation (20) that

¢ 28 - 1
(e = ey

The following height funections, which are listed with the

cerresponding F, are chosen

E=1, F,, = 8- ¢t ¢

H = é’ Fin = 2§—1 - i—?
E = zi;l, ‘Fls = ¢

o 2E-1

-+ Fi4 = 1

6G 1 -
ST a3 SR

\

(103)
(1649

-(105)

T (108)

.Fram equations (90) and (87), for the corresponding partic-

ular integrals,

p = 0.01273 ¢ °
11
—_1 . -2
~ p,, = - 0.02546 ¢ + 0.03881 ¢
= - 0. 3 ¢

P 0.01273 ¢

Pya =0
The coefficients ¢; and 4,

(107)

(108) B

-(109)

(110)

are next determined from
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equatione {(91) and (92). This process is.carried out in
detail for case 11 to illustrate the procedure, while fer
the other cases only the results are listed.

By substituting first in equaticn (91},
27P1 o _ 272 o = 0.02546
and then, by subétitﬁting in equation (92)
F,,' (1) =1, p,,'(1) +-2Y% p, (1) = - 0.0030485
(n, + 2Y®) ¢; - (n; + 2Y°) c5 = 1.0030485
¥Yor the constants occurring in the twe equations,

5=81 _ 0.00019905, 2 %2 = 7209.515, =n, + 2Y°

= 13,05513, n, + 2Y2 = - 12.05513
so that altogether
©.00019905 ¢, - 7209.515 &5 = - 0,02546 (111)
13.05513 o, + 12.05513 ¢y = 1.0030485 (112)

The relative magnitude of- the coefficlients in equation

(111) makes it numerically most convenient to solve by
guccessive approximations of which the first is found suf-
ficliently accurate in this and in .most of the follswing
analogous cases. Thus, as first appreximation,

ey = —2+02546 _ 5 0000635320 ' ‘(113)
3
7209.5156

and, with this value of ¢, substituted in equatica (112)

1

1
.003 - . 3 X 0, 3
13.05513 (0.0030485 ~ 12.0551 0.0000035320)

cl [

= 0,076828 - (114)
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Toam

A resubstitubion of this value of ¢, 1in equation (111)
gives as second appreximatien. ;. . S
l [

®2 = %209.515

(0.02546 - 0.00013905 x 0.076828)
| 3 = 0.0000035321

sﬁowiﬁg that the first aﬁproiimatinﬁ for ¢, was 6xact to

feur significant figures. It is convenient to uwege,  In~

stead of ¢,, the value of

27%2 o, = 0.025479 g (118)

' With the introduction of eguations (114) and (115) into

equation (86) with p,, frem equation (107), there results

. — . —~18.816
£.. = 0.0245 £~ + 0.1591 EY2+2°% _ o o528(2¢)

11 (116)
In exactly the same manner the solutions in the other _
three cases are found as .
f1g= -0.0527¢71+0.0803 £ 2+0,0067 £12 - 2%%_0.2160(28) 2" %1%

) ' (117)
f15 = - f11 ) ' , . : . (118)
fi0 = O (119)

Expressions for the étresses-are obtegined by agailn
substituting f£(§) in equations (26). The numerical re-
gsults are contained in table ¥V and in figure 8. If thesse

results are compared with the corresponding results for

a beam with concentrated tip load and no width taper

(fig. 3(c)), 4t is seen that shear lag is substantially
less pronounced in cases 11 and 12. In case 13, for which
the beam dimensicns are such that F(E) (and thus the
stress 0%) decreases from tip te reot, a conditicn oc-

curs which might be called negative shear lag., in that in-
stead of an increase of edge stress due to shear lag a )
decrease of this stress takes place with a gp;respoﬁding'
increase of stress in the interior of the sheet. 1In case
14 (for which n» diagram is given) the variastion of beam
height h 1is so chosen that the stress aqcording to the
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elementary theory does net vary along the span and no shear
lag occurs in thig case. This 1s in accordance with the
general result of reference 2 that no shear lag occurs

when the product of sheet thickness +t and bending stress
Ty does not vary along the span.. With regard t¢ case 12,

1t is noted that shesar lag 1s quite appreciable in the ¥Fip
half of the beam while it decreases almost to zero toward
the fixed end, a behavior which 1g in contrast with the
results obtailned in the cases of uniform width.

Beams with uniformly distributed load (cases 15 to 18).~
The same dimensions are assumed aznd the procedure for odb-
taining the solutiong is the same for cases 15 to 18 gs
for cases 11 to 14. The moment function now takes the form

M{E) . ‘2
Wy (2¢ - 12 (120)

and thus

F(EY = i%iﬁ%f%li S (z21)

The following choices are made for the height function and.
with that fer F

H =1, Fog = 48 - 4 + & (122)
H = ¢, Fig = 4 ~ 4~ + g2 (123)
H=2f(-1, ¥, =2-¢Y =%, (124)
He2-¢"7, Fyg = 2¢ = 1 (125)

From equation (90)

P;s = 0.01273 E—l = = P, _ (128)
P, = 0.05093 £ ° - 0.03881 L% . (127)
Pi, = Pna (128)
Pig = O A . _ . (129)

and for the shear-lag functions f°
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£, = -0.0264¢ '+0.4753¢2°2%%,0 0526(2¢)7 "2 %1% (130)
f1s = 0.1054£7%-0.0808£72+0.5115¢2 240, 1105(2&) 18.818
. (131)
fi12 = 11 - . | (132)
£, = 0.31718¢%2°2%% _ o oo00s(2t) 1216 (133)

Introducing £ into equation (26) again gives the stresses
as in table VI and in figure.9. It is seen that, in case
15 in which the F-curve is most similar te the correspond-
ing curve for the beam of uniform cross section (fig. 3(al),
the stress pattern as modified by shear lag is-also mest
similar but that the taper in width reduces the maximum-
streés increase from 18 to 15 pércent. In cases 16 and 18,
the F-curve approximates that of the beam with uniform cross
section and concentrated tip lead and a. corresponding sim-
ilarity is obssrved in the stress patterns.. In case 17,

the curve is concave upward and shear. lag is further re-
duced. In general, it can be sald that these examples do
not permit the conclusion that width taper materially af-
fects shear lag beyond a modification of the F-curves.

with linearly increg&ing,loag_i_gggg,19 to 22).~
The beam dimensions sre again assumed to be the same gnd
the procedure for obtaining the solutions is also the
same as In previous cases.

The moment function is now

M(E) _ (2t - 1)° (134)
My . : .

so that

F(E) = ﬂ%ﬁﬁ%g%li . " (135)

The following choices are’ made for the height function H
and with that for F - N

E =1, Fig = 8¢% - 128 + 6 - ¢ (136)
E=¢€, Fao

E = 2¢-1, ¥,

8t ~ 12 + 6~ - t—2 (137)

4t - 4 + t71 = F,, (138)
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H = 2-t7%  Fap = 4§ - 4§ + 1 - C (139)

The'bsrresponding functiens f -are obtained exactly as
in the preceding paragraphs , o

f19 = ~0.2172¢%+0.0246¢ 1+0.8394£%2-23%5,0,0014(2¢)7 12 %26

(140)-
fao = -0.1582¢  *+0.0803¢72+0.6891£%2 2950, 0052(24)" 22 728
(141)
R ) _ R (142)
foa = -0.1086¢% +0,6573¢12-2%5,0 op70(pp) 22816 (143)

Numerical values of the functions f sand of the
corresponding stresses are given in table VII and in fig-
ure 10. It is again seen to what extent taper reduces
the magnitude of the shear lag that would occur for g beam
with uniform cress section.

Beams with cencentrated load at midspan {(cases 23 and

24) .~ The same values of the parameters are assumed as io
the preceding cases. The moment functioen is now

M(E) _ [0, 0.5€f<0.75 -  (144)
Mg 1_4§_3, 0.76 € £ < 1.0 :
so that ‘
0=2%, 0.5<¢ix0.75
F(g) = 4t -3 E . 075 € £ € 1.0 (145)
"*l'—H—"ET i ‘- I\ =
.
FPor the height functicen H i1s chosen
70, 0.5<5 < 0.75
E =1, Ty, =4 IR . (146)
\4~§§ , 0.75 K £ < 1.0
0, 0.5< t< 0,75
H = ¢ Py =-{ _ Lo e — (147)
' 4¢77_3t7%, 0.m5< £ < 1,0
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»

The method of solution by means of equations (94) to (97)
is given explicitly for case 23, while the corresponding
resiilts for case 24 are listed. . :

First, from equations (146) and (90),

-1
= 0, = 0.03819 148)
Py Ls 0 Pr as 038196 ¢ (
Equations (94) and (97) becoms
0.00019905 ¢y — 7209.515 cy = O (149)
13.05513 4, + 12.05513 dz = 3.00915 (150)

and the transitien conditicns of equations (95) and (96)
becoms

(4/3)77 (dy-cy) (4/3)™™2 (dz-c5) = -0.050928 (151)
~ny -z
12.29457(4/3) (d;-c.)+12.81569(4/3) (dz-c3)=4.05093
(152)
Bolving equatiecns (151) and (152) gives
—nl ) M .
(%) (dy-cy) = 0.13533, 4, - ¢, = 4.65020 (153)
4\~ o2
(E) (dz-cz) = 0.18628, dz -~ cg = 0.004660 (154)

From equation (149) follows that, in first approximatien

cy = O (155)
and hence, from equation (154)
dp ® 0.004660 (1586)
Then, from equation (150),
d, % 0.22619 (157)
and, from equation (153), B
cy = - 4.42401 (158)

From substituting this ¢, in equation (149) a second ap-



.36 NACA - Technicel Note No. 893

proximatiop follows:

ce % - 0.00000012 - (189)
and, from equation (154),

ds ® 0.0046659 : (160)
and, from equation (150},

d, & 0.22619 : , (161)

1

and, from equation (153),

c, ® - 4.42401 (162)

It is geen that the sscond approximations-agree suf-
ficiently well with the first approximations to permit
discontinulng the process. . r

In this way the following final results are obtalned
for cases 23 and 24: :
12.2858 —-lz.8186

{_9.1eoog +0,0012(2¢) » 0.55 £<0.75

12.816

0.0791¢ 1+0.4683 , 0.75< ¢<1

)

—_

...]_0_7179&13.29‘5_’_0‘0021(2&)-'—12.816’ 0.5$ gs 0.75
f2,4 =< . . A . (164)
~0.1054£72+0.2410672+0.3240¢78°2%5 0 o153¢ 13- F1°,

= 0.75 & £ < 1

Numerical values of the functions f and of the correspond-
ing stresses are given in table VIII and in figure 11. It
is agaln observed that the effect of taper 1s a reduction

of the mgximum percentage increase of stress due to shear
lag in the beam of untapered crosgs secticn with correspond-
ing load (fig. 3(a)).

Beams with uniformly distributed load and incresasped
taper (cases 25 to 28).~ In order to observe the effect
of increasing the rate of taper, beams with uniform load
distribution are assumed to taper in the followlng ways:

“1163)
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lo 20 l
3

3 .
_— = s —_— = =, H =1 T (155)
le 20 l 3

— = = _— = = H =

e = T I £ (166)
Ye _ 5, X - 1, E=1 (167)
¥R le . . _

-Z_S. - 5’ _?:_ X .l‘ H = g (168)
WR le

for cases 25, 26, .27, and 28, respectively. 4s before, if
m = 3, :

2 = 0.6901, Y° = 0.3803 (99)
while, from equation (34), for cases 25 and 26,

K8 = 69.01409 : . (1e%)
and, for cases 27 and 28, -

2

k® = 38.82042 ' _ (170)

The exponents of equation (87) in the solutien of equation
(86) are new, for cases 25 and 28, .

n, = 8.18714, =ny = - 8,70826 (171)
and for cases 27 and 28,
n, = 6.15582, 1np = - 6.67695 . (172)

The calculations carried out in éxaétly the same way as
has been indicated for the sample case 11 show thatb

(4¢ - 1)% 16

8 © 1 4-1 ’ ,
F = ———————————— @™ - - 173
as 9t 9 ¢ g "3 ¢ ( )
f.s = - 0.0065¢ +0.8855£°°*%7+0,0260(4t) %" 7°%
(4¢- - 1)° 16 8,71 , 1 .2 o
e = i e et 5t (175)

_(174) o
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£,,=0.052067%-0.02027%+0.1529¢°%" *%710.115638(4£)7 %" 7°% (176)

Fop = £ (177)
f,, = 0.2994 £°°1°° (178)
ng =" 1 ’ (fl?g)
f,g = O - - +{180)

Numerical valuses of the functisns f(f) and of the corre-
sponding stresses are given in table IX gnd 1n figure 12.
The increased taper has reduced the maximum percentage
strese inecregse still further. An indication that width
taper i1s most significant inasmuch as it modifies the F-
curves is given by case 27, for which the F-curve is lden-
tical with the F-curve of the beam with uniform crass sec~
tien and concentrated tip load (fig. 3(e)), with the re-
sult that the effects of shear lag are of almost identical
neture. Case 28 is again a case fer which TF = 1 so that .
no ashear lag ,occurs.

Beams with uniformly distributed load and différent -

stiffness parsmeters(cageg 29 to 32).-~ Beams with uniform

load distribution are tamken with the same taper law as in -
cases 11 to 24. The results are to be compsred with the
correspondling results fer cases 15 and 16, which are iden-

tical with cases 29 to 32 except for the value of the

stiffness parameter m, .

By determining first the values of the auxiliary param-
eters for m = 1,1 and m =3 it is feund, from equatiensg
(34) and (82), that .

2

m= 1.1 : A°=1.5695, Y2=0.7265, &°=883.13901 (181)

m =3 : N=0,4118, Y?-0.2353, k2=%2.64706 (182)
and from equation (87), that for the values f the expo-

nents, -

m= 1.1 ¢ n, = 17.9787, ng = - 19.8845 (183)

m =53 : on, 9.7278, ny = - 9.6690 (184)

By carrying out the remaining-calculations as detailed in
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case 11, 1t is found that

— 1 N
m=l,1 ¢t H=1, Fog =48 -4 + ¢ =F,5 (;85)
fae= ~0.0263¢"1+0.7276¢£17+97940.0525(2¢) " 7 %57 (186)
m=1,1 : H=¢, F,o=4-4t72 + ¢78 =F, . (187)
,=0.1051¢ *-0.0791¢ “+0.4799¢  "°7°

+0.1016(2g) 1% B85 (188)
m=23: H=1, F,, =TF,g : - (189)
£,,= -0.0266¢"1+0.3621E%-728+0.0527(2¢)7°°%°° = (190)
m=3: H=¢ Ty, = Fyq (191)
f32=o.1053g’1..o.0824§‘a+o.2355§9'72e N
+0. 1168(2§) T9%9  (192)

Numerical values of the functicens f(ﬁ) and of the
corresponding stresses are given in table X and in figure
13. A comparison of cases 29 bto 32 with cases 15 and 16
shows that decreasing m, +that is, making the side webs
reletively weaker, tands to lncrease shear lag. and vice T
versa. It is noted, however, that by cheosing valuses for
m as extreme as the present ones a larger effect is ob-
served than is likely to occur in practice for which, as
has been previously stated, the value of m 1is larger
than 1,5 and smaller than 2.5. The fact that, for the,
limiting case, m = 3, the actual edge-stress distribu-
tion coincides with that given by the elementary theory is
explained by the vanishing contribution of the cover sheets
to the total beam stiffness. . -

EFFECTS OF SIMULTANEOUS TAPER IN WIDTH

"AND COVER-SHEET TEICKNESS

In this sectien, beams are considered that are tapered
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accarding to the laws

w=t% ©=t", mw= constant © (193)

Introducing equation (193) into the differential equa-
tion (21) gives .

fl 0 £ f'
" 4+ (r+4Y%g) - [r + 2¥%8gq (2q-—r+l)]E§ - K2 Faa
=3>\3[F"+££F'_—g"§?]=3>\aﬂ (194)

and introducing equation (193) intoe equaticns (22) and
(23) for the boundary cenditions gives

£o

£1(1) + (2aY¥%+r) £(1) = 3% [F'(1) + r] " (198)

g (g) =0 (195)

if use is made in equatisn (196) of the fact that (1) = 1.
From equatiens (24) and (25), if for the present purposes

it is assumed that W and T are coentinuous so that only
the effect of & concentrated load remains, 1t follows far
the transition conditions that -

£,(8.) = £,.(E,) (197)

and, 1f equation (197) is utilized in the evalumation of
equation (25), ' .

£, (k) - £,'(E,) = 8A° [F;'(tc) - Fr'(Ec)] (198)

The Case of Linear Width Taper

As in the preceding section, an especially simple
class of selutions is obtained in the case of linear width
taper where a = 1. The solution of equation (194) 1is
then of the form

n, ng

£(¢) = 3N [cl E - c5 ¢ +_p(§)J (199)

where now the exponents are given by
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2 2 8 U
n, = .l_:é__l'. P +./j(—l—£-1l-)— + 4mY N +Ko (199a)
(1+2)° 2 5 |
ngo= 23T o 2¥T o/ SRAED o 4ny® R (199b)

and p(g) is defined as before by means of equations (88)
to (90), where the first factor v, 1n the numeratotr of
equatlon (90) is to be replaced by v + r.

Thus it is seen that, in the case of linear width taper
and thickness taper aCcordlng to equatien (193), the calcu—
lations of individual examples procsed in entirely the same
way as 1in the cases of linear width taper aind no thickness
taper. ~fome calculations have been made here for beams with

linear sheet thickness taper, that is, r = 1.
Beamg with uniform lozd (cases 33 and 34).- In addi-
tion to: ¢ = r= 1, +the following values are assumed for o

the remaining parameters

. . _
6G 1, 1 1 M(§) 2

- 27 ts _ =~ = = =, = (2¢(-1) (200)

m o= 2, T owg - 10 T, - b T3 oWy tat -

so that tho top view of these beams 1s ldentical with most
of those treated withoeut thickness taper. The two casses
censidered distinguish themselves by different height ta~
pers, namely,

. 2 : e _
H = 1, FSS = igégilf = 4 - 4§~1 + g-z . (201)
E=£, F_,-= Lﬁ%?Lli N VY L (202)

For the auxiliary parameters,
A% = 0.6901, Y2 = 0.3801, k% = 155.281%

and from equation (199), for the exponents

n, = 11.8244, Ry, = - 13.3455 _ (203)
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The remalning calcunlations carried through as in the preced-
ing section give

—e . -13.346
f,,=0.0526-0.0396¢ °+0.4497¢" "% 40,1058 (2¢) (204)
£,,=0.1584¢2.0.1080¢ 2+0.2978¢ 1" ®3%40.2803( )" 2 2*®

(205)

The distribution of stresses corresponding to these
results is containsed in table XI gnd in figure 14.

A comparison of case 33 with case 16, which has the
same F-curve, shows that the thickness taper is responsi-
ble for increased shear lag and that the percentage in-
crease of the maximum stress has risen from about 11 to
about 15 percent, indicating that the neglect of thickness
taper 18 not a conservative procedurs.

, A comparison of cases 33 and 15, which have the same
‘TF-function, shows that the stress patterns are mest simi-~
lar and that, in both cases, the maximum stress increase
amounts to about 15 percent. Thie result indlcates that
the shape of the TF-~curve rather than the shape ef the F-
curve determines the sghear-lag pattern. Further evidence
to support thig view is obtained if cases 34 and 16 are
compared. For these cases, the TF-curves are identical and
again the maximum stress increagse 1s in both cases the same
and amounts to 11 percent.

Begms with no spsnwisge tgriaﬁion of extrems fidber

stress gpccording to elementary beam theory (cggeg 35 and
36.~ The effect of thickness taper is further emphasized
by considering two cases for which

P(E) = 1 (206)

gso that, if T is constant, there would be no shear lag.
The two cases considered are distinguished from sach other
by different degrees of taper in the followling way:

For case 35,

1 .
G_G'_.e..:ls’ —-.L..—.
LB

Z o E =1 (207)

NJH'

and, for case 36,
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iG_'_L_e_.z 7.5, —_= 1, ‘H = l (ZOé)

It follows, from the definition of F(E), that the'exterﬁal
moment distribution is given by

we) _ ¢® (209)

Mp

so that in both cases there is a uqifb;m spanwise load
distribution; while, for case 35, there is in addition a
concentrated tip moment of amount M (3)/Mp=1/4 and a

concentrated tip force of magnitude M'(3)/Mg = 1.

For case 35, all the necessary paramseters are gilven
by equation (203). For case 36, '

k% = 38.8204, =n, = 5.71400, ny, = — 7.23513 (210) -

and the shear-lag functions £(f) take en the farm
. & —13.34% N
£.o.= 0.0131 + 0.1507¢7%" %% _ 0 0132(2) %" %*%  (211)
5.714
fzg = 0.0501 + 0.2652 ¢

(212)"

The stresses corresponding to equations (211) and (212)

are given in table XII snd in figure 15. Stress inicreasess
of 6 and 11 wpercent are found owing to the conver-shee’

thickness baper, while neglect of the variation of T .
would have indicated that there was no shear lag. Oase 36
l1e particularly interesting because the TF-curve coincides
with the corresponding curves in cases 27 and 3a, in which
there is nnly width taper or no taper at all. In all three

of these cases, the stress increase -is the same and equals

11 percent. This evidence further supports the contention
that the shape of the TF-curves' and the value of the aspect-

1/ =2 : )
ratio parameter (B/G} " (w/1) are of main importanceé in
determining the amount of shear lag.

The Case of Sheet Thickness Taper Only

If conétant width is assumed, that is, if
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g =0
equation (194) reduces to

e+ T st - (s® + E%> £ = 3N (ﬁ*" + 37 ".'g% Py (219) \

and can be written in the fearm

!

1 . .
[g_r(grf)':’ - Kr = 33 [g’r (ng)'] (218a)

The solution of this sguatien 1s known to6 De

grf = 37\2 £'2 [01 Ir_:l:_]_ (Kg) - Ca I‘m (Ki) +P(§)] (214)
2 : 2

where the factor 3A° 1s inserted for convenience and
where I.,,, 18 the modified Bessel function c¢f the first

kind of order E%l_ Ifm_zgl is an integer. I p41 would .
be a constant multiple of I,,;, and must be replaced by
3

kp ., which is the corresponding function of the second

2
kind.

The function p(f) 1is found by the method of varia-
tion of peramseters in the forn

)E r+1 . ) 2 = .
p(E) = /(,ﬂ_gi {%zii(ni) T pa(6M) = T 2y (kE) ;lii(nn)} :
d 2 2 X 2 2
[n'r(n'rF)_ } an _ (215)

According to ‘equations (195) and (196), the constants
of integration are determined by

r ' ~

b, f(E,) =20 (195)

[ﬁrf]'- = BN [&r?]! (216)

and
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The transiticn conditions at the place of a concentrated
load are as before equations (197) and (198).

In view of the fact that the modified Bessel functions

of order n + % (n =1, 2,.,...). reduce to certain combi-
nations of hyperbolic functions, it follows that when

T = Q, 2, 4, ¢ v e (217>

the solutisn of equation (214) is éxpressible in terms of
hyperbolic functions and reduces,’'as it should, to the pre-
viously derivéd solution for beams with no taper when r = O,

When r =1, - that is, for linear taper, the modified
Bessel functions are of the first order and tables for
these functions exist. (Tables also exist for the func-—
tiocns corresponding to T = 3 By, «o.la’

It must be said that there still rsmains the difficulty
of evaluating the particular integral of equation (215).
Id most cases this evaluation will be possible only by nu-
merical methods as exemplified in the section on beams with
taper in helght and otherwlse nenvarying cross section.

In certain instances, however, the particular integral
may be obtained in a very simple manner, namely, by chans-
ing the @gisbturblng fuhekttsn F in such a way that either
the right-hand slde or the first term of the left-hand
side of equation (213a) vanishes. ‘Ingpection of equation
(213a) reveals that ' : :

T = a‘lgs + aaga_r + &SE, + a4€—r| (é.1+ag+a3+a4=l) (219)

is of the nature indicated. Substituting equatisn (219)
in .equation (213a) gives the equation

[E'r(ﬁrf)!Jw - kg

which is satisfled by

[(sﬂ») agt + (1or) aag-r] ' (220)

fpart

= - :k [(3+r) alg + (l*r) a3§ ] (221)

or, in accordance with equation (214).
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s _ r+1 _ T+l
p(t) = - WE [£3+r) a,t B + (l-r) agt (222)
Prom equations (219) and (20) it follows that for the «

moment distributions which glve rise to the simple partic-
ular tntegrals

+
EEL%%ET = IF = alﬁr's + azga + asgr + a, (223) B

+3i

sc that for beams of uniform height (H = 1) one of the
solutions applies, irrespective of the value of r, +to

the case of uniform load digtributicn; while the type of
the other losd distridbutions depends on the valus of .r. )

Certain particular cases among the class of solutions
included in equatien (219) will be investigated further in
the following discussion,

Beam with linesxr thickne taper e 37).- If uniform .
height 1s assumed, frem esquation (223) :
T a . 4 4 -
M(E) = A, Ef_:_ég_ + Ao E__:_E%_ - (224) .
Mp 1 - t,2 R R '

where the constants have besen so aéjusted that the tip sec-
tion is mement free. From

MI(EL) ag, 4t.®

=chy ——2— 4 Ay —— g (225)

Mg 1 - E,° 1- by _

it follows that, unless -
t, = © - - (2286)

the load system includes a concentrated tip load.. If equa-
tion (226) is assumed, it is seen from

n T f -
Eﬁiil = 8A, + 12 Ay ¢ - (227) :

R

that the effects of a combination of uniform and parabolic

load dlgtribution can be anglyzed with the solution ob- -
talned. . . . . . ..
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If, in the followihg development, attentian is re-
stricted to the case of a uniform load, that is, if it 1s
assumed that ;

A, =2 =1, Az; =8, = ap = ag = 0 . (228}
¥, = ¢ (229)
£,, = B\ [cl I, (kE) -~ cp kl(ni)j (230)

It seems worth while in this connection to state explicit-
ly that, for linear height t.a pe.r (E = ¢), ¥z, corrs-
sponds to the case of linear load digtribution.

From the boundary condition of equation (195), which
is now

T(o) £,,{0) = 0 . (231)
it follows that
e, = 0 i (232)

and, from the other boundary condition of equation
(216), that

~

r T | o R
c1 {é%'tﬁ Il(Kg)Jlt=1 = 2 - _ o )

which, in view of the law of differentistion for Bessel
functions

éL [xnln(x)] = xnIn_l(x). é%-[x~nIn(x)} = x—n1p+l(x)

x
becomes
2
= (233
°: = TRy - (258)
so that, finally,
6N I,(Kk¢E)
= 3
£, Ty (234)

This solution will be discussed with two solutions ob-
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tained for quadratic bthickness taper in the folleowing par-
agraph.

Beams with quadratic thickness taper (cases 38 and 39).-

When 1= = 2, the mement distribution of equatinn (223) can
be written in the form :

5 5 TR 2 3 3
ME) B, E_;Z_EQE - BB.E { o B, -t (ass)
MpE(E) 1 - to ST ot B 1 t,%
If, as befcre,
t, =0

is sssumed it 1s seen that, for uniform height (H = 1),
the three terms in eguagtion (235) correspond, respectively,
to a load increasing according to a cublc law, to & uni-
form load, and %o a linearly increagsing load.

For uniform logd distribution,

Fz,a = 1 (236)

and, for linearly increasing load,

F.o = £ = (237)

From equation (222), it follows that

-2
2

2 : ' '
Prg = pEa £ Pag = 0 (238)

and, in accordance with equation (214),

_% . . i 2 _3
£f.q = 3X¢ [01 Ig(ef) - cpl 5 (8E) + ;;-E a] (239)
e _ 3 . .
£og = 3X3g—% [cl Is(KkE) - cof sl(ﬁﬁ)] (240)
El =
The Bessel functiens of .order %, may be written
2 1 sinh x
Is =/-—- (cosh x --—-———-—),
3 VT JE

x . :
I .= o 2L (sinh x - EEEE—E> (241)
w T7 ﬁ X
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It follews from the free—end conditien of equation (195),
for case 38, that

3 21 -
lim {— cyt® Iz (KE) + i%] = 0, cg = - s (242)
E—>o R Ko d )
and, for case 39, that
cg = O : - (243)

FPyrom the fixed-end condition of equaﬁion (216), 1t follows,
for case 38, that .

a 2 £ : 2
E-E Clg I%(K'E) - ng I_%(K’E) + "K—é' = 2
h . =1
which can be transformed into

c, K I%(n) - cz K I_%(K) = 2 (244)

and, for case 39,

{ it [ga Is(ng):l} =3
=l _
which can be transformed intna
cy K I%(K) =3 (245)
where N . ’
2 sinh X _ 2 cosh x -
I%(x) ,/ = I-%(x) -A/f; — (2486)

Thus, finally,

2 2 - 2 I (R) i
g =32 Vit :(Kg)ﬂu/ R g (kE)
8 Jut VE I3(k) =3

-2
2

+_2(n® (2472)

which can be transformed into

6732 [ 1 - cosh K ( ginh K§>
f = h K -
38 kE ginh K cos : KE

+ sinh nﬁ °°Sh cosh kE } (2471)
Ki
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f = _ : (248a)

3¢ ﬁ Iﬁ(”’) F"E'

which can be transformed inte

a2 .
5A sinh)ﬂﬁ] (248b)

f 2 ——e——— |cosh RE -
&4 Kt sinh K [ s g KE

Discussion of the numerical regults far sheet-
thicknegs taper,.,- Numerical evaluation of the solutions
for cases 37 to 39 will further confirm the fact that the
shape ¢f thes TP.-curve is the decislive facter in the ef-
fects of shear lag. Bilnce

TF,, = £5, TF,_ = £7; TP, = ¢°

this fact will be brought out by a osmparison of the re-
sults for cases 37 to 39 with the results that were obh-
tained in the section for beams with uniform and linear
load distribution, for which

2] .- .
TF, = F, = £, TF; = Fy = ¢

If, for a numerical cemparison of the states of
stress, the same structural data are assumed as were used
previougly for beams with uniform and linear load distri-
bution, ngmely,

G 1 L
n o= 3, o= 7.5y k= 6.231

the stresses along the edge of the sheet and along the mid-
dle line of the sheet are calculated by inserting the nu-
merical values of the functlons F and of the functions

f in equations (26). The results are given in table XIII
and in figure 16. A comparison of the stress pattern for
cases 37 and 38 with the stress pattern for case 1 (fig.
3(a)) shows that little similarity exiets among the three-
stress patterns, except théat the value of the percentage
increase of the edge stress at the fixed end is very nocar-
ly the same in all three cases. If, however, instead of

a comparison of the stress patterns, a comparison of the
stress-resultant patterns is made; that is, if the dis-
tributions of To/0, are compared instead of the distri-
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‘butions of o/0, %t L's seen -that the variation of T0/0,

is very nsarly,tho same 1in all three cases. .

The same results .may be cbserved when the results of
cese 39 (fig. 16(c)) are compared with the results of case
2 (rig. 3(v)). . : : - S

It is worth while to note further that, in case 38
(fig. 15(b)) in which according to elementary. beam theary
the stress does not vary in the ' spanwlee direction, the
maxinum stress increasse does not occur at the -fixed end
but near the free end of the beam where the sheet thick-
ness decreases to zero. This evidence again indicates
~ that, while the distribution of stress near the fixed end
of the beam can-be rather clesely predicted te be .that of
a beam with uniform cross section, the same .is not always
true at other sections »f the span. : '

An additional comparison of the states of stress in
beams with and withe~ut thickness taper is made by calcu-’
~lating: the effective shoet width at the fixed end of the-

" béam as a function of the parameter / %%%.% and of 77T

/212 ¥ ynere T ias again the dlstance of the center of

gravity of the (TF)%_ourve from the section § = 1. TFor
this comparison it is assumed that m = 2, 80 that again

. ' <Weff L -
o w ; 1w

The numerical results obtained are_given in table XIV and
in figure 17. T

£(1)

O J{ 6}~

£(1)

It.1is noted filrst that, when the results are ccmpared

w

for corresponding values af -?, there 1s a prenounced

difference between the cases for which TF =~§2% and the -
cases for which TF = ¢3, If, however, the results are

compared as functions of , 1t 1s seen that in all cases

the sgreement is close for not too 1arge Values of'

J g;ﬁ %' all curves in fact start out with the .same ini-

'tial slope and a notlceable deviation of the curves from

Rl
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each other cccurse only for rather large values cf T30

i =

Ag far as calculaticn of the effective sheet width
near the fixed end of the beams 1s concerned, therefore,
all the evidence points to the conclusion that it 1s per- ¥
misgible, with sufficlently good appreximation, %0 base
the calculation for moderately tapered beams on the model
of a beam with urniform cross sectlion of which the width
eguals the root width of the actual beam and the length
egquals the length of the actual beam; while the effects of
taper are incorpsrated by taking for the model beam with
uniform cross section a function F(E) identical with the
T(t)F(E)-function for the actual bean,

If only.an estimste of the effectlive width is desired
the approximation may be carried still further by consid- -
ering a model beam with uniform cross section, which car-
res only a concentrated tip load and has a span length
the same fraction of the span length of the actual beam as
the ratio of the distamnmce of the center of gravity of the ;
toy, curve from the fixed end of the team to the span
length of--the actual beam. Within the accuracy of this es- e
timate 1t 1s then possible without any calculation to
take the result from the curves in figure 4, -

While a very simple general result is deduced for part
of the problem, it is also seen from the work of this sec-
tlon and of the preceding section that the percentage of
change 1n the stresses all along the span may be appreci-
able when there i1s taper, especially sheet=thickness taper,
and that to obtain gquantitative results in this respect it
apPppears necessary to bage calculations on a beam model
rather clesely gpproximating the dimensions of the actual
beam.

II - SHEAR LAG IN BEAMS ON TWO SIMPLE SUPPORTS,
WITHOUT OR WITH OVERHANGING ENDS

It is possible to use the gengral rssults of the
least~work method, which are contalned in the first two

sections of part I, for the analysis of beams supported in -
any statically determlned way, in particular for the analy- -
els of beams on two simple end supports. The onrly modifica-

tions concérn the boundary conditions for the shear-lag -
functions f(£f), While for cantilever beams T(E)f(E) wvan- -

ishes at the free end and a displacement condition is pre-
scribed at the fixed end, beams with two simply supported
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or free ends will have Tf vanishing at both ends as a
censequence of tha caendition of vanishing edge bending
moments. The exampnles that follow are intended to show
how the method is applied. ‘ ) [ —

BEAMS OF UNIFORM CROSS SECTION

ON TWO SIMPLE EXD SUPPORTS

The differential equation of the preblem is as before
equation (31). For the bending-moment function F(E), 1%

is now more convenient to write . =
r oo H(E) (249)
Mmax . .

If the coordinate system is selected s that the ends of
the beam have the coordinates E =1 and £ = - 1 and if
1 denotes half the span of the beam, the boundary condi-
tions are, instead of equations (22) and (23),

£f(-1) = 0, £(1) = 0 (250)

At the point of application Ec of a concentrated load,

the transitien conditione of equations (24) and (25) occur

as before. Bxplicit sclutions. will here be obtained for the

following load conditicns: S e
(a) A cosine lsad curve, for which

F4o = C08g Irz_ E (251) A

As in case 4, 1% 1is seen that

2
3N ™ o
fa0 = ———————j—-cos - ¢ (252)

satisfies the differential equation (21) and the beundary
conditions of equation (250). _ _ ’ T

(bp) A uniform load distribution, for which

F":l = 1 = g (253)
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The sheaf lag function

2 _
BA < cogh kE
SA_ (1 . LEBE "> (254)
far = k2 cosh K

satisfies the dlifferentlial equations and the boundary con-
ditions.

(¢) A concentrated load at ¢ = £{,, for which

71+ 4
E——:—-g:, —-1~<~€'6gc

Foo = " ¢ (255)
o festES

AN

In order to obtaln the solution in this case, there may be
wrltten '

£ = (256)

A sinh K(1+E), -1 % £ K &,
42 B sinh k(1-£), (e, €81
which satisfies the differential equation (31) and the
boundary conditions of equatioen (250)., The transition
conditions of egquations %24) and (25) determine the con~
stents A and B as follows: ‘

A cosh Kk (1+t;) + B cosh & (1-.) = T2
- o]

"Solving for A and B +there 1s obtalned

- 2
6A" sinh K(1-f.)
(l—ﬁcg) sinh 2K
£.. =4 _ o : - (288)
L 6A° sinh R(1+§c) - )
sinh Kk (1-8),. &,

n(laica) sinh 2K

sinh n(l+€), 1<t

/A
yte
17
-

\
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In particular, when the load acts at midspan,

. 3N gy -1
Fape = 1= | £ |1 fapq = Z-sinb BUSIED)  (559)

The magnitude of the effsctive sheet width at the sec-~
tion of greatest bending moment, where F = 1, 1is nf par-
ticular interest. This quantity is calculated according

to equation-(27). In what follows values ef E%fi are ob-

teained as function of the parameter "./-%%% %» if the

stlffness parameter m 1is assumed to have the value 2.
The calculatlons are carried through for cases 40, 41, 42a,
and 42b, of which 42b is the case of a céncentratsd load
at the guarter span point.

The results, which are given in table XV and in figure
18, indicate that, for a laad distribution symmetrical
about the midspan sectien, the effective shset width becomes
smaller as the entire load 4is more nearly concentrated to-~
ward ‘the midspan section. It 1s seen that moving the con-
centrated load- awvay from midspan reduces still more the .
effective width. ' i T T e

It should be noted that not only are the results here
:obtained approximate, much simplified solutions of the
sffective width problem for beams with isotrople cover
ghests such as hdve been obtained previously by von Kirmén,
Schnedel, and .others, but that the present results go fur-
ther inasmuch as they permit taking intd account the ef-
fect 6f.spanwlse stiffening of the shéets dy assuming an
appropriate Value of the ratio G/E-

.'BEAMS oX TwO SUPPOETS-WITH OTERHANGING ENDS

. . The method for obtaining the solution for Veams on °
two supports with overhanging ends may alkso be indicated
here. - If it is assumed that the coordinates '6f the sup-
ports are again € = - 1 and f = 1, the Ooordinaﬁes of

the ends of the beam may be denoted by £,(S - 1) and
€2(2 1), - The bending-moment function ¥ is now defined

in thé range 7f13$ tE < tE,. The differential equation is

the same as before. and the boundary oonditions for the
free ends and the. transition conditions at the points of
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suppart sre : : T o ' ' ) .
£(E,) =0, £(t;) =0 _ (260)
£,(£1) = £ (£1) (261) )
£.0(£1) - BAT F, (1) =f£, (#1) - 3A® T (1) (262)

No examples of application will be considered here. _
It may be =ald, however, that case 3b of a cantilever —
with concentrated load can be interpreted as the solution
of a problem which belongs in this discussion.

III - DETERMINATION OF SHEAR LAG IN STATICALLY UNDETERMINED
BEAMS AND ITS EFFECT ON THE DISTRIBUTION

OF BENDING MOMENTS

_ For statically determined bveams, that is, for cantl-

lever beams and for beams on two moment-free end sup- -
ports, the distribution of losads is determined by statics .
and the alm of any beam theory is ‘only to relate the given

moment distribution to the distridbution of stresees over

the cross section of the beam. When statically indetermi- -
nate beams, such as a beam with two clgmped ends are con-~

sidered, the distribution of moments for given load de-

pends on the conditions of support.. This condition leads

to the question as to whether the distribution of moments .
as given by the strength-of-materials theory is medified —
on the basis of a more exact theory of bending; for in-

stance, on the basis of a theory for box beams which

takes into account the shear deformgtion of the cover

sheets. The results ®6btained in the following develop-

ment show that not only is the distribution of stresses

over the crosgs section gffected by modification of the

assumptions in the theory of bending but that also their

resultéant bending moment is in general affected, except

when the distribution of bending moments 1s given by

-statics. . -

Since this gquestion has not been previously treated,
it was thought worth while to consider it in connection
with the related work on statically determined beame evon
though 1t seems of less practical interest in aseronautical
%Dplicatlons than the corresponding theory for cantilever !

eams.
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The theory will be given here only for beams of uni-
form cross sesction, either with both ende clamped or with
one end clamped and the other end simply supported. The
method of snlution is a medification of the least-work
method as applied to the problem ef the statically sup-
ported beam.

For the yet undeterminate distribution of bending mo-
ments for given lozgd distribution, there may bes assumed

x

M(x) = Mg(x) + Mg + My 7 (263)
where M, 1s the moment distribution of elementary beam
theory and M, and M, contain the seffect of the shear
deformation of the cover sheets. :

Corresponding to the distribution of moments of equa-
tion (263), the normal stress in the cover sheets is as-
sumed in the form

o(x,7) = oy(x) - (B - L) e(x) . (264)
where o
op(x) = o (x) + o, + 0, T (265)

As has Doeen shown in reference 2, the shear stress in the

3 31 ' ]
cover sheets follows from ng +'§§-= O in the form

.

T(x,y) = vy Ub’(x) - % (m __Z;) s'(x) - (268)
w

Azain, as in the case of the statically determined bean,
these expressions for the stresses have to be introduced
into the expression for the internal work W of the struc-
ture and W has to be made a minimum. New, however, it '
is to bPe taken into consideration that not only the func-
tion 8(x) ©but also the constants o, and o7 are to be

determined by the minimum condition.

If the two ends of the beam are taken at x = 1 and
at x =~ 1, W ig given by : : : - -
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w=% / / [oxe + % TZJ dy dx + = / [oe(x, w)] dx !
. w o
Loy | . .
= %.//.j/ {:[Gé(x) + Ty + O, %”~ (g‘ﬁ %5> s(x)]'

a -

+ %» vlo t(x) + 7% - % (ﬁ - %;) s'(x)] } dy dx

2 I ¥ . ) ) ° =) .
w x m
+ o ‘/P  Og(x) + 0y + 0 T - (Ei- 1) s(x)] dx  (267)
'L -

From equation (267), it follows that B

/ / Lcr +o 40, %".C-_""—) s(x)J[ .

-t —-w

X _ (Br_vy* E (c'-+gi>
AL ( ) J G l: 0 1
. yaj t( )J[ . 1l .y ( Y8> .]]
~ = {(m-—)st(x y60; —~= (m-==)88 dy dx -
3 w/ o3 w? S -:

Bl

EW =

ed

-l

[}

2, P o e - AN ,
T The / '[%'"%*C& 3 <§“1>5:"_5§0+§01?—Q3——3>Bs“dx (268)

-1 : , : : o

and 8¥ as given by equatisn (268) has to vanish 1f W 2
is to be a minimum. It is seen in equation (268) that
titere are three varigtions §645, -80;, and 8s and those
are in general arbitrary - except Ffor a relgtion between -
80, and 80, when the moment at one end of the beam is

known - so that, for any statitcally undeterminate prodblem,
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equation (268) implies more conditions than are obtained
in the statically determinate case. Evaluastlon of equa-
tion (268) will meke this statement evident. If the inte-
%ration with respect $o ¥y is carried out in equation _ _
268), it follows that T e

[ L l.
2 X x m 1
8¥ = £ 2wt f{ [(5c°+acrl-z-> <06+co+0'1 z_ (5 - -:,_;) s)
L -1 ) - a g
. _GS«E_;)(G - £>_(Ei_.ﬂ+l>'s>
3 B3/\e o1 9 9 B
w So 1 o 3 1
= £". 1(_(0- l+__&_ -— —— E_ _) !)
A G[ T \3 e "7 z3\z  5/°
1 /m 1 ( °1> 1/ m2 2n 1>
1 A a2 e —_ = — === += L
*6s ( 3 3|5> ¢+ )5 (F-F 3 5) ax

1

BIW ’ X m X m N .]
+ hg_/ [ge-l-cowl _z_..<§..1 s][&_o‘o+60‘l T..<5-1> a§ d%c (269)

-

=1 N

If it is observed that

31, + I
IS = Wthz, m = __l__TE_____E_
Iy + Ig

if terms with the same variations as factor are combinead,
and with o, = 05 + 0, + 0 %‘, it follows that =~

nt . .

= x o x -
0 = / <8cr°+80"l_ 1){13 I:O'b-s (m—l)sJ *I, O’b-<§-—l>s]} ax
-1 '
1
E 80, [ 1 1/m 1\
2 1 t 1
v G_f 5 Ls LA AN Y N

-1
(Continued on p, 60)
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[
+.'/"s;(~£) {Is [ (m-l) oy + (—- -2 D BJ
-1
+ IW [- (; - 1> Oy *+ (3 - 1) I:rdx
+ wo I % 83'(::){ %("“" "'I%_(-&;;'%é*.%) B,} ax

(270)
The terms containing & in the firset integral and the

_ terms contalning Op 1in the third integral of equation
(270) cancel since :

'BI + I m .
1 -2 _~£ w-s-_<x+:)=o
< ) 3 3 3 8 w

If the last integral is integrated by parts, it follows
that

A Co. : -
. .- X L
0 = f <60‘0 + 60‘1 7) (Iso-b + IW Gb) ax
4

3
E _a 8o, 1
+ o w° I —=(c - (= = —) ) d
3G 8__/ T P 5 *

-1 o

[
ma
VAL 1, (5 - —-+-—>+I <3..1>]
-1 :
E 3 1l /m? 1
AN FEC-RE- R R "b"]}d"

- m 1 /m? 1 ’
+ 3 v IB{[E '—5-—_5‘ —'> s! - _—E Ub':}és}.'(z'?l)

-1

ISH
|k

=
)]
1
(s3]
!
B8
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and
- ] -3
* m® om . 1 . n-l (m-3) _ 2/ 1
9 T8 5  Bem 9 T 3 \3 5
¥
it follows, finally, that
1
0 = Scb‘/P op éx
-1 ..
zf E I w? 1 '
: x s W m 1 1]
+ 60'1/ LT Oy, -+ T T T [Gb' -3 s l}dx
I v 2 .
+.._B Ssrg E._.]; s .._sz [}_ (E_...Z_Iﬁ-l-_]'_) sl
Ty, 13 \8 " 5 36 3 \z 5 7
R ot == 2
B L n
- "(3’5> Gb]}dx
E I 1 ,m® 2m 1 l m 1 \ b
- — 3 -_—g— — —_— e, —— — I-__ — wn — 1 85
TEe v Iw{[5<3 5t F) 3 5“’} }
. _1/
’ If the parameters
N 35m - 21 s 66 1° 52
= 5 ' K = — —3
35m - 42m + 15 B oy

are introduced as before, equation (272) .can-be written

(Equation continued on p. 61)



62 NACA Tegchnical Nots No. 893

l
2 2 . 2
-Eﬂil(i_ﬂ.{.}_) 55{5“- Ls_37\3 O'b"}d-x
I 36 3 \ 3 B 7/, 12
21
I, B w° /n? 2m 1 | 2 '
R - S ——_——+—>{ s' - BN oy | &8s (273)
I 3G 3 \ 3 5 7 .

Since s 1s independent of o :énd- op SO0 far as equi-

librium conditions are concerned, the same ig true for

6 and, in order that equation (12) be true, it is FThere-
fora necessary that the integrand of the third integral
vanish. Purthermore, because of this lndependence, the
integrated part of equation (273) hag to vanish individu-~
ally. ZEence, if for oy equation (265) is again intro-

duced, the fellowing set of equations is finally odbtained:

i :
0 = scro/ [Ge(x) + O, + 71_.?;;_:] ax
)
L 2
+ 80, / {[ce(x) + 04 + O3 —T—]f— +—2Z\—5——B- 1 [‘&e’(:)
. K
-1
I E.._1_> s'(x):}}dx C (274)
1 3 5 '
o1 (x) - Ko g(x) = B8 oyt (x) (275)
1

o
{ [0 - 8 (o100 + %—)] Ss(x)} o (276)
=1

Ls in the statically determinate case, equations (275) and
(276) are the differential equations with boundary condi-
tions for the shegr~lag function s(x). The new result

is contained in equation (274), which represents one or two

conditions according to whether a, and o, are depend~

ent upon each sther and which, therefore, in sither case
is sufficlent to determine o, &nd Oy.

At this point, it seems best to comsider separately'
the various cases corregponding to0o a beam with two fixed
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ends and a beam with one end fixed and one end simply sup-
ported and to consider specific examples-ghowing.the ef-
fect of the shear deformation of the cover sheests on the
stress distribution arnd, in particular, on the momént dis-
tribution.

BELM WITH BOTE ENDS BUILT IN

No relation between o, and o, follows from equilib-

‘rium considerations and coAsequently equation (274) is
equlvalent to two separate conditions. The integrals in-
volving 0 (x)  vanish betause of the conditions of sup-

2 P P
port, since g, = constant %;%, and where in this connec-~
tion w stands for the deflection of the beam” .-

1

> a? v ] b & 9 o
—%’- ix = [——E Cy x g dx = [x aw w} = 0
. dx 1ax . dx - dx .

) - A - - -

The boundary csnditions of equatien (276) assume their

proper form if, for fixed supports, the multipliers of

§s(1) and of &8{~1) wvanish. If the intézgration in _
equation (274) is carried out, therefore, the complete B
system of equations (274) to (278) reduces to

o, = 0 (277)
2 . A
2 SR N 'Is : X' _(m -1> , .
= 0, + 2L 8 |5 o -~ ~{=- - = = 0 278)
K3 2
s (x) - ;g s(x) = 3N o "(x) (275)
2 Ul - h
x_= x 1, s'(x) -~ 3A (o*e'(x) + T = 0 (279)

This system of equations indicates immedistely that the
distribution of bending moments as given by the elemen-
tary beam theory remains unchanged 1f the load and there-—
wlth the moment distribution is symmetrical about the '

middle of the beam because, for this to be the case, o, ' -
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must vanish while O, vanishes as the conseguence of the

least~work conditions.

In order for the bending moment distridution of the
built—~-in end beam to be affected by shear lag, it is
therefore necessary that the loagd distribution be asym-
metrical about the center of the beam.

The follewing examples will be solved explicitly:
(1) %beam with uniform distribution of load (case 43)

(2) %beam with antisymmetrical deflection of both
ends (case 44)

(3) beam with antis mmetriéal linearly distributed
load (case 45§

The first example is taken because 1t is one for which
shear lag 1s of surprising magnitude. The second example
is taken because it 1llustrates the way in which modifl-
cation of the moment distribution due to shear lag is
connected with a reduction of-effective beam stiffness.
The third example is taken- to illustrate the way in which
the effective mement digtribution depends on the distridbu-
tion of load.

The follewing results are obtained for the three cases!

(a) For the dilstribution of stress according to ele-
mentary beam theory

| |
Case 0o (x) /g (1) log ' (x)/ag (1) 120, (x) /a, (1)
3.1 ? a—
1 X i X
43 22 <1 _ 3 ) 3 = 3
2 PE - T
x . i
44 = 1 0
! . -
3 (x 5 x3.> 3 ( L x3> X
45 -8 <_'—.-... -3 (1 -8 15 =
2 \1 " 313/ | 2 I 1

(b) For the general form of the shear-lag function s,
which follows from equation (275),
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_s(x) = G, cosh « % + G, sinh kK % * Spart (280)

If the symmetry conditions are observed and the appro-—
priate values of 0g"(x) are taken, equatien (280) takes o
on the forms
Gaée ' 8

7\a
43 | €, cosh K .9 =
- -, b K
44 da sinh & % -
Az X
45 Oz sinh & = - 45 2o = -
1 8 7

1
1

If these expressions are substituted in the Dboundary cbﬂdi—'
tions of equation (279), there follows for OCn, if in addi-

tion o‘e(l) =1 1is set
Case ! c,
9a2 I
43 ! Cy = ——/——— : : - .
i K sinh K
| ' \2 —
44 } 6, = 3N (1 + G{) _ | |
| K cosh K o - e
| 2N (6 + 0y - 15/52). | - |
45 l Cy = 1
i

K cosh K

The shear-lag function & Dbecomes in the three cases

K

Case s{x)
o . X T
43 T _| _ _ . - (=281)
K sinh K KJ ’ )
e ginh ¥ = , : -
44 (1+0y) — -t _ (282)
cosh K. o _
2 sinh K x
3A : 15 7 15 = :
45 (5+C.71 + F> ——t - =2 (283)

cosh K K 1

k2
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The values of 0y have now to be determined by substitut-

ing squations (282} and (283) in equation (278).
214/I = 3 = m is put, thers follows

Case
>\3<3 ) 2 3\ tanh
-h -m anh K
= 23—l [ 1=A ——) ——— 84
44 qo, =T = [ <m = ” ] (284)
. ' 2
. 1332 <m._%9 5(tanhk - k)+2k° tanh &k
AN (3-nm) , ] K3
45 o = -3 3 -y
K 1+3 A (3—-111) ’ 1_}\_3 (m__%) tanh K
" 5 K
(285)
The distribution of normal stress in the cover sheets
is again obtained from equaticns (264) and (265) in the
form
Oxtxy) oo(x) £ oy ¥ m i’_) o) (286)
oe(1) ce () 3w/ 0, (1)
with s(x) and o, given, for the cases considered, by

equations (281) to (283).

When

stituted in equatien (286), it - follows that

.0gs Oy, and 8 are sub-

Case Gg(x,y)
(1)
a B 2 ‘cosh K X
2 /XN 1 m oy >-%K ' 71
3 pul — — o — - — oam—
4 .2 (l) 2 3 we. K sinh K K (28?)
% o B\ a2 - sinh K X
14 (1 + 0y) = - <— - Zs> AL+ 0y) (288)
1 3 w K cosh K
5 /x 3. 3 (x X 5 m A\ 3Xé
S HORHORENOR R
2 \rp 2 \1 *\1 3 %? K
1 5\ sinh K — 15 x
<6 + U'l + __2> ——— e — (289)
K
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. The formulas: (287) ta (289) have been evaluatad for a

278w S L =

typilcal beﬁm'witﬁ EEE-% = 0.3 (span length " 21 equals
five times the width 2w for 1sotropic cover sheet) and a

with equal centribution of side webs and cover sheets to
the stiffnnss of the beam (m = 2). From equation (273),
it follows that for the parameters A2 = O. 660,  and

K= 6.231. The values of the end-moment correctian oy
have besn calculated from equatiens (284) and (285).

Table XVI contains the numerical results for the distribu-
tion of stress. The data contained in table XVI are given
graphically in figure 19.

In nrder tm explain the large'

near the Ffixed ends .of the beam in
formly distributed load, i% may be
the beam near the fixed ends where

amount of shear lag

+the case of the uni-

said that the part o
the moment curve is

T

positive can be considered approximately as a cantilever
beam of correspondingly shorter span l,. Since 1, = 0.4 1,

w/le = (1/5) (10/4) = 0.5. From equations (40) and (26),
it follows, for Ux(Zc,b)/bb(Lc) for a cantllever beam of
length o and width 2w with uniformly distributed load,
Tg(l, 0) 2 a
=1_ml_[x££h__fij|-_—1 N
0y 7: 'Ka cosh K . K
and with
66 2 1oV . W B 2
2 = —— ——c— = - —_— — =
" E 7\. ('w) » = 2, A= 0.83, ic 0'5_’- 66 3
———— =1 - 2 X 0.83 X 0.666 X 0.5.= 0.447

op(1,)

and this result agrees almost exactly with the corfeepdnd—
ing stress ratio obtained *or the loager beam with both

ends fizxed. : __..ﬁ.“'-;_

e

In case 44, one-half the beam behaves appraximately
as the corresvondéding cantilever with concentrated end load
and the amount of shear lag bears oub this analogy. (See
fig. 19(®v).)
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‘Tor the linearly distributed antisymmetrical distri- R

bution of load (case 45), shear lag 1s even more pre-
nounced than for the uniform, symmetrical distribution of
logd. The resson for this condition is that the length of
the corresvonding cantilever 1s even lessg, that is, leg =

0.2 1. " oo

In connection with the modification c¢f the moment
distribution, it is seen that shear lag in the two cases
considered reduces somewhat the value of the maximum mo-
ment, in case 44 by about 4 percent and in case 45 by about
7 percent. - - :

Table XVII contains values of 0,/0g(3) as a func-

tion of w/l for three values of m 1in case 44 and for
m =2 1in case 45, and the data contained in the table
are represented in figure 20, .

The gquestion ariges as to why there is no modifica-
tion of the moment distribution in:the symmetrical case
while a modificatien occurs in the antisymmebtrical case.
While it 1s felt that a better physical interpretation of
this fact should etill be attempted, the following dif-
forence between the two cases is evident: In the symmet-
rical case, the possible superimposed state of stress, due ~
to © is uniform gnd involves no shear stress; while

]

0,
in the antisymmetrical case the superimposed state of
stress, due to 0, is nonuniform, involves shear stress,

and is thus affected by shear lag. .An explanagtien should
also be given for the fact that, although the effective
beam stiffness in the symmetrical case is reduced owing to
shear lag near the two supports, this spanwlse varlation
of beagm sbtiffness 1s not responsible in 1tself for a mod-
ification of the moment distribution of selementary beam
theory, according to which the effective beam stiffness
does not wvary. .

BEAM WITHE ONE END BUILT IN AND ONE END SIMPLY SUPFORTED

Ifit is assumed that the end x = - ! is simply sup-
ported, 1t follows from equation (265) that .

Gy = 0, = 0 : (290)

and hence
§C0y - 80y =0 (291)
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- If squatinmns (290) ana (991) are introduced in the main
- system of equations (274) to (276), it follows from equa- T
tion (274) that

s L . :‘ . . Lt - .

/ [cr (x) + 0, (1 + )] (l + —) dx '. _' __ B ____ -

4 | : a o
+_%I—f-?{%+<%1% ”5-—> }

Bquation (275) remains unchanged, and équation (276) sepa-
rates into the tWO conditions T

s( Z) o s'(l)'- 3T oy '(I) ; . ;§?§2)

From equation (292), 1f it 1is observed that again

J/ i) <l + —) ix ='constantd/n =~§b<l + —) dx

. . T e
= constant [(l + 5 dw - ¥ =0
: dx S

- - - . 1 4 -
. -

because of the conditions of.support,-thé'equatidn deter-
mining T, can be written as

2 I_.r . N T T T
oy + 2 A?'EE {ce(z) + 20, ~ (= = E) s(y)] = 0 .. (293)

(SRR

% 3

Since the calculation of examples from this point proceeds

exactly as for the beam with two fixed ends and since no

baslcally different results are to be expected, no such

calculations have been made here. It should be nbted,.

hewever, that one of the cases coneidered for the beam

with fixed ends, namely, the cass of. linaar antisymmetri-

cal load distribution, includes the case of a beam wlth -

- one end fixed and one end simply supported if the portion
' of the beam to the right or to the left of the center sec-

tion is considered a separate entity. - > o
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CONCLUSIONS

The following conclusions with regard to the problem
of shear lag in cantilever box beams may be drawn.

The shear deformation of the cover sheets may be re-
sponsible, 1In actual cases, for stress increases of as
much as 20 to 30 percent of the sbresaes predicted Dby the
elementarv beam theory.

The magnitude of the shear-lag offect depends on a
variety of factors, of which two are found to be of
grestest influence:

1. +the product of the spant root-width ratio of
the beam and of the square root of the ratio of the ef-
feetive shear medulus and of Young's modulus of the
cover sheets (1/3wp )(G/E)i/g

2. the shape of the curve prepresenting the product
of the spanwise sheet normal stress of elementary beam
theory and of the thickness of the coverusheet toy .

The magnitude of the shear lag increases with de-
creasing values of (I/ZWR)(G/E)

Negative curvature of the togp-curve 1ndicates rel-
atively little shear lag while positive curvature indi-
cates .appreciable shear lag.

The present work indicates that taper in beam width
ie¢ of lmportance only insofar as it affects the function
toy. Bufficiently accurate results may be obtained by ana-

lyzing, instead of the beam with width taper, a substi-
tute beam. of uniform width equal to the root width of the
tapered bean.

The present work also indicates that taper in cover-
sheet thickness 1s of appreciable importance and should
not be neglected in the analysis. Xspeclially noticeable
shear-lag effects dsccur at sections where a discontinuous
change of cover-sheet thickness takes place.

The effect of taper in beam height is 1ncorporated
entirely in the function t0p .

It 18 found that within the practical range the effesct
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0f a change of the relative. stiffnegs of the cover sheets
and of the side webs including flanges 1s very small, so
that further calculations may be based on the assumption
of equal ralative stiffnesses. ’ - '

It is thought that by giving the explicit results
fAar a good many sample cases, an idea 1s given %o the de-
signer of the magnitude of the effect and of its depend-
ence on design data. The results of the calculations
should prove useful alse for reasnnable estimates in those
cases where canditions are somewhat different from the
fnes which were considered here. )

Neo trestment has been glven to problems involving
beams withsut symmetry adout a spanwise vertical plane.
The presence nf a slight degree of such wnsymmetry is be-
lieved tn be of little influsnce on the amount of shear
lag present. It wnuld, hnwever, be feasible to extend the
analysis to distinetly unsymmetrical beams and to evaluate
some typical cases,

4 further possible extension of the work would con-~
elet in the analysis of beams under combined bending and
torsion loads. Such an extension offers no essential .
difficulty. It is believed, however, that if s loading is
separated into a bending component and into a torsionsal
component it will be found that shear lag due to the tor-
sional compnnent is considerably less marked than that

due to the bending component.

A further part of the problem which so far has not
been investigated is the effect of camber nn shear lag.
It is possible to extend the work in this directien and
to analyze some typical arrangements. A reasonable pro-
cedure, which analysis .should prove %o be correct, is
thought te be a mndification nf the stresses of the eisX
mentary theory in the cambered beam by means of the calcu-
lated shear-lsg effect for the beam without camber.

Department of Mathematics,
Massachusetts Institute of Technology, } -
Cambridge, Mass., June 1942, . S
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TABIE I.- NORMAL STRESSES AIONG THE EDGE AND AIONG THE CENTER LINE OF CQOVER SHEETS FOR

BEAMS OF UNIFORM OROSS SECTION.

X1 F f, G(x,0)/s, G(x,%) /8,
) 0 o) o o
0.1 201 -.048 <042 -.008
002 -04 . --072 .088 5016
Q.3 .09 -.082 .148 <083
0.4 .16 -.082 .2185 «133
0.5 «26 -.073 .298 +226
0.8 .36 ~.040 .393 <344
0.7 <48 -.003 .492 .489
0.8 .64 .085 .583 .688
0.9 .81 .280 .643 8893
1.0 1.00 .5568 .628 1.188
*/1 & £ &(x,0)/6% & (5)/6,
0. 0 0 0 >}
0.1286 .002 -.036 ° .026 -.010
0.2B0 .016 -.071 .063 ~.008
0.375 .053 -.089 .118 .020
0.500 .128 -.114 .201 087
0.625 844 -.099 +310 .211
0.750 .422 -.019 <435 <415
0.875 .870 .201 .538 737
0.950 .857 +464 .548 1,012
0.976 .927 .B585 537 1,122
1.000. 1.000 .728 .518 1.243
x/ Fu fsa SGalS,  Sup/s,
o o 0 o) o
0.1 o1 .00L .099 «100
0.2 .2 .002 .199 201
0.3 .3 .004 297 «301
0.4 .4 .008 . 395 403
0.5 N .015 .490 503
0.6 .6 .027 .582 +608
0.7 .7 .0Bl .666 <717
0.8 .8 .096 736 .832
0.9 .9 .178 .781 .989
1.0 1.0 <338 778 1.111
x/1 s fis 5(x0)/5, 5, W)y
3] 5] o o o)
0.1 0 -.018 .012 -.006
0.2 o -.043 .029 -.014
0.3 o -.085 .087 -.028
0.4 o -.182 .108 -.054
0.45 o -.221 .148 -.074
0.5 o -.303 .202 ~.101
0.55 .1 -.204 .236 .032
0.6 .2 -.124 .83 .159
0.7 o -.008 .97 .402
0.8 .8 .136 .B09 .845
0.9 .8 .321 .588 .5Q7
1.0 1.0 .635 .B77 1.212
X/ L F;,D'b fl. % 6’{",0)}@. 6(""0/54
0 0 o) o) ] o
0.1 .02 -.078 072 -.008
0.2 .08 -.101 .147 .046
0.3 .18 ~.078 .233 .154°
0.4 .32 -.002 .322 . 320
0.5 «50 .159 .394 .583
0.6 82 028 +503 «529
0.7 .58 =011 .587 578
0.8 .88 .034 .657 .691
0.9 .82 .179 .700 .879
1.0 1.00 .481 .875 1.160
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TABLE II.- EFFECTIVE WIDTH AT BUILT-IN END OF BEAN OF UNIFORM CROSS SECTION.

NACA Technical Nots No.8s3

_— W,
LY (1
VR ® fo (. VRE
[+] (o] 1.000 o]
0.078 24.922 160 .899 0.15
0.180 12.461 « 308 «Bl6 0.30
0.228 8.307 439 746 O.45
0.300 6.231 561 .686 0.6u
0.376 4,984 «676 .832 0.76
0.4560 4,154 .788 584 0.90
T7E w [m=E) W E W
\{'}z_?n b K £.0) ( w )11 Vaze &
[+] o) 1.000 o]
0.0756 24.922 «230 858 0.226
0.15¢ 12.461 4256 752 0.460
0.225 8.307 +689 «672 0.878
0.300 6.231 . 728 «809 0.800
ZIEY [27E
vg'z—s'-[ K 2 ('%&)n 336 T,
[o) o] 1.000 0
0.076 24,922 * .083 «946 0.075
0.150 12.461 .166 .896 0.150
0.228 8.307 «249 .847 0.225
0.300 6.231 « 332 .801 0,300
0.375% - 4.984 . 415 . .7567 0.378
0.450 5.154 «498 «715 G480
0.800 3.116 <862 +638 0.800
Q.786¢C 2.492 .819 «571 0.760
0.900 2.077 «968 «B13 0.900
7E [:::Ek ¢ [/ ) [27E ¥
Vizel K o) w )R v 326 h
o] (o] 1. G00 0
0.075 30.384 +10L . .336 0.075
0.160 15.1862 «202 877 0.150
0.228 10,121 « 304 +824 0.226
0.30¢ ?7.891 «403 .776 0.300
0.375 8.073 +«B08 <731 0,376
0.480 5.081 807 . 689 Q.480
0.6800 3.798 8089 «616 0.600
0.756¢C 3.036 1.007 +563 0.760
0.80¢ 2.530 1.199 « 500 0.90¢
27E W i We y JE W
G 1 K 30 () (‘_w&)‘ %E Te
[¢] [o] 1.000 0
0,078 21.660 072 «963 0.076
0.180 10.780 144 «908 C.15C
0.226 7.1867 «218 »8681 0.225
0.300 5.390 «287 817 c.300
0,376 4,312 « 359 774 J.376
0.450 3.693 «431 <732 0.450
0.600 2.6985 570 .653 2,600
G.760 2.168 +700 .582 0.7b0
C.900 1.797 816 .521 0.900

¥



TABIE III.— RESULTANT STRESS DISTRIBUTION FOR BEAMS WITH TAPER IN EEIGHT.
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x/1 ’ F‘ ﬂ 6(%,0) /6, &(x,v)/o
0 o) 0 3} .. .__©
0.25 .400 .082 345 427
0.50 667 071 <619 +590
0.75 .857 .079 .804 .884
G.85 919 «104 .849 954
Q.90 <947 127 .863 «990
0.95 .974 .158 .869 1.027
1.00 1.C00 «202 .866 1.06%
x/1 F, ‘F, G(x,0)/6, & (x,w)/o
0 0 o 0 0
0.25 . 100 -.076 .151 Q78
0.50 333 -.042 .361 .319
0.75 .843 D61 .602 .663
G.85 . 781 . 167 <677 .833
0.90 .B53 . «230 .698 .929
0.956 .926 .329 .706 1.035
1.00 1.0Q0 «483 . 692 1.154

TABLE IV.- STRESS RESULTANTS FOR BEAU WITH

/1. TF T¥s Tom0/t,6e L6 V/ESE,
0 ) 0 0 )
0.126 .126 .009 .119 .128
0.2560 .250 024 .234 .268
0.376 .378 .085 .338 .393
0.5C0 .500 <120 .420 .540
0.625 .625 .081 .571 .652
0.750 750 .093 .888 781
0.875 .a75 .166 .785 .930
1.000 1.000 . .342 772 1.114
x/1 TF, T, t6en/k.e,  teluyEG,
) ) 0 0 )
0.125 .016 -.048 .047 -.0003
0.250 .083 -.058 .101 .043
0.376 <141 -.036 .185 .129
0.600 .250 .030 .230 .260
0.625 .391 .007 .386 .393
6.750 .563 .057 .625 .581
0.875 .766 .211 .626 .838
1.000 1.000 .567 .622 1.189
x/1 T F[p Tfl [ £ 6k P)A: 15 tei :"')/hx‘o
0 ) ) 0 -0
0.125 .014 -.0B5 .051 -.004
0.260 .063 -.077 .114 . .037
0.500 .260 -.066 .293 .228
0.625 .391 -.023 . 406 .383
0.750 .583 .072 .51B .688
0.800 .840 .136 .549 .685
0.826 .681 .177 .583 740
0.860 722 .224 .573 797
0.875 .766 .280 .579 .859
0.900 .810 .346 .580 .926
0.925 .856 .398 .590 .988
0.950 .902 .463 .594 1.087
0.975 .951 .542 .589 1,131
1.000 1.000 .637 .575 1.212

75
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TABLE V.~ NORMAL STRESSES FOR BEAMS WITH CONOENTRATED TIP IOAD.

NACA Technical Note No.893

x'1 F £, Gix7),6, a (w6,
(o) 0 Q (o] [¢]
0.126 »222 .035 .198 . .234
. 250 +400 <040 374 . 413
0.376 .546 .03 . 519 .558
n.,500 667 D39 540 <880
0,750 .857 .081 .817 .877
©.875 .933 100 .867 967
1.000 1.0C0 .18% 276 1.082
x*/1 Fa fin E(x\0)/E,  GlX\W)s,
o] ] (&) . [»] "0
0.125 . 395, 112 _e320_ _ .433
C.256 . 840 .109 .567 . +678
0.375 .793 NS0 <734 823
0.5C0 .889 Nsyd-] .841 213
0.750 . 280 048 .949 .995
0.8785 . 926 .34 .970 1.008
1.000 1l.c60 034 977 1.011
71 Fiy fis EG3)/8, e(w)/s,
[¢] 2.000 [o} H " 2,000 2.000
0.185 1.776 -.036 1.801 1.766
0.250 1.600 -.040 1.828 1.587
0.376 1.4556 -. 039 1.481 1l.442
G.500 1.333 ~-,039 1.3680 1.320
0.750 1.143 -.061 1.183 1.123
0.875 1.067 ~, 100 1.133 1.033
1.000 1.00G -,185 1.124 .38

TABLE VI.~ NORMAL S8TRESSES FOR BEAMS WITH UNIFORMLY DISTRIBUTED LOAD.

X'/l Fs fis G(x\0) /s, G (x*w)/S,
o] Q . o] : 0 o]
¢.125 .028 ~.0356. .051 .016
0,250 . 100 -,038 125 . 037
0.376 . 205 -.083. .228 .194
0.800 . 333 -.021 347 . 328
0.750 .643 .0862 .602 .864
0.876 .817 © L,18% .692 879
1.004 1.000 449 701 1.160
C

x*/1 Fis fie G(%,0)/5, AN A
0 o a_ 0o d
0.128 . 049 -.042 Q77 .035
0.250. .160 -.030 .180 .160
0.375 298 -, 012" . 308 . 294
0.5Q0 . 444 . 007 <439 - 447
0.750 .736 .076 . 684 .760
0.875 871 . 162 .763 9256
1.000 1.000 . 337 . <778 1.112
x’/l F;s 'Fu G(".ID)Fd “f*fw)/%
(e} 0 0 o} (o] .
0.125 .126 .000 .126 .128
n,260 . 250 001 . 249 .250
~,375 375 003" 373 .376
0.500 500 .009! 494 . 503
0.750 780 081 709 270
0.875 .875° . 143 . 779 983
1.000 1.000 <317 . 789 1.108
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TABLE VII.— NORMAL STRESSES FOR BEAMS WITH LINEARLY INCREASING LOAD.
XM Fis fia G(x0)fs, G () /5,
0 ) 0 0 0
0.125 .003 -.021 .017 -.003 )
0.250 .026 -.040 .052 012 ' _ -
0.375 .077 . -.056 ©.1la .058 _ T, .= =
Q.500 .167 -.063 .208 .146 -
0.750 .4562 . .026 . 465 .401 ) T
0.875 .715 .217 . 870 787 R A o
1.000 1.000 .629 .568 1.218 : o
v Fir fue (<o), §G:2)/s,
o] o] o [5) o . T
0.125 .006 -.028 . .025 .=.003 :
6.260 .040 -. 047 .270 .025 . . —
0.375 .112 -.054 .148 .084 : : -
€.500 .222 -.049 .255 .208
0.760 .551 .048 .519 567
0.875 .762 .212 .621 .833

- 1.000 1.600 .551 .626 1.187
K‘/ 1% Fa ‘Fu. & ()0, 7(";\")/ (2
(o] (o [¢] o0 o] _
0.126 .016 -.028 : .034 .008
0.250 .063 = -.039 . .068B .050 - -
0.375 .14l ~-.044 .170 .126 -
0.50Q .260 -.042 .278 .236 -
0.7560 .5683 .044 .533 .577
0.875 .'766 .202 . .631 .833 N
1.046 1.C06 .549 .634 1.163

TABIE VIII.- NORMAL STRESSES8 FOR BEAMS WITH CONCENTRATED LOAD AT MIDSPAN.

S/ R . f:.; (i) b, - oY,

0 [¢) 0 o .0 - -
0.125 0 -.007 .005 -.002 a N -
0.250 o -.028 .019 -.009
0.376 0 -.091 .081 "=.030
0.500 0. -.267 .178 -.08¢
0.626 .308 -G48 275 .324
0.760 571 .128 . .486 +614
0.875 .800 274 .617 .881
1.000 1.000 .538 - .642 1.179

-
x4 Faq fi SGEYs,  olxh)/e, '

o o 0 0 8]

0.126 o} -.008 .008 -.003 T

0.250 o -.033 .022 -.011

0.375 o -.107 .071 -.038 ' T

0.500 0 -.312 .208 -.104

0.625 . 379 .126 - .295 .421 T
0.750 .653 2175 .538 711 ) )
0.875 .853 .273 871 944

1.000 1.000 .444 .704 1.148



TABIE IX.- WORMAL SYRESSES FOR BEAMS WITH UNIFORMLY
DISTRIBUYED IDAD.
X Fp fir Ga)/s, Tl /5,
0 ) ) 0 )
.083 .022 . 017 .034 .017
.187 074 -.016 .085 -069
. 250 .143 -.014 .162 .138
.333 .222 -.012 .20 .218
-500 .400 -. .401 -309
.667 .593 .028 .674 .802
~750 .60 .062 .848 .710
.833 794 .122 712 .B34
.17 .898 .220 749 .97%0
1-000 1.000 .379 747 1.126
»
1L E, £ Gli)fs, §Gr/s,
0 0 ) 0 0
.083 071 -.024 007 083
.167 -198 ~.002 -195 .187
« 250 +327 «014 317 «331
.333 S444 .024 .428 482
.500 -840 .035 617 .652
.887 790 .048 .758 1506
.750 .849 .081 .808 .89
.833 -807 .084 .851 530
.917 .986 .123 .874 997
1,000 .000 .185 .877 -1.062
r 3
N k, fr €)%, e iy,
0 ) o ) )
0.128 125 .0001 .125 .125
0.28 +250 .0007 .250 -250
0.378 375 -001 2375 L5378
0,500 .500 .004 .487 -501
0.625 .62 .017 -614 631
0.750 750 .05 .718 <767
0.876 .876 132 787 919
1.000 1.000 .209 .800 1.100

TABIE X.- HORMAL STRESSES FOR BEAMS WITH UNIFORMLY DIETHIBUTED
LOAD AND VARYING STIFFEESS PARAMETER.
XL Fag fis 6K, s3)/5,
0 ) 0 o )
0.128 .028 -.042 .043 .001
0.280 .100 -.041 .115 ,074
0.378 .205 .037 .218 2181
0.500 2353 .031 . 345 L5314
0.688 481 .015 486 .471
0.750 .843 .0%8 2630 .666
0.876 .817 .200 743 -943
1.000 1.000 701 743 1.444
o . . sk, 5%/,
[¢] 3] 0 0 (o]
0.126 .040 -.063 069 016
0.850 - 160 -.033 172 «139
0.375 .298 .014 .303 -28%
0.500 »444 002 eddd «446
0.625 .592 -o21 -584 -605
0.760 736 .080 715 773
0.878 .871 173 .808 -980
1.000 1.000 .508 .814 1.320
. »

Iy Fn - f:u stxaA, 6 WV/5,
3 ) o ) o
0.128 .028 -.029 .057 .028
0.250 .100 -.033 133 .100
0.375 .£05 ~.027 .231 .206
0.500 533 -.012 . 346 .333
0.626 .48 .016 .465 - .48),
0.750 .643 .089 .574 .643
0.87% .B817 .165 .652 817
1.000 1.000 336 .664 1.000
A Fa £z GG, s,
o] 0 0 [)) 0
0.128 049 -.033 .083 .049
0.280 .160 -.026 .185 .260
0.378 .298 -.008 .306 .298
0.500 A4d .012 .433 444
0.625 .592 -038 .5B3 .502
0.750 . 736 .079 .808 .735
0.875 871 . 146 .726 671
1.000 1.000 .260 ~740 1,000

X
- ]

E6B *ON 30N TROTUQOS] VOVK
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TABIE XI.-NORMAL STRESSES FOR BEAMS WITH UNIFORM IOAD.

»

x‘/l Fss3 7C33 &) [6, /6,

) 0 0 .0 o
0.125 .049 -.0860 .083 .033 _
0.250 ..160 -.042 .188 .146 .
0.375 .298 -.030 .317 .288 : .
0.500 .444 -.002 .446 <444 -
0.6825 .592 .031 .571 .602 T
0.750 .736 .094 .672 786
0.875 .871 .217 726 .943
1.000 1.000 .463 .892 1.154

“ E s ey (<"

X7/l 34 34 (x10)/64 ) /6y

0 0 ) 0 ) -
0.126 .088 -.058 .127 .088
0.250 .2B6 -.024 .272 .248
0.378 .433 .010 .428 .436
0.500 .593 .03%? .568 .805
0.628 .728 .085 .685 .760 _
0.750 .840 .107 .768 .875
0.875 .529 .188 .804 .992 _
1.000 1.000 .348 .768 1.118

TABIE XII.- NORMAL STRESSES FUR BEAMS WITH KO SPANWISE VARIATION OF EXTREME FIBER STRESS.

. r3
x*/1 Rs fsr (x0) /s, E(x4) /%
) 1 0 1 1
0.125 1 .011 993 1.004
0.250 1 .013 .991 1.004 o
0.375 1 .015 .890 1.006
0.500 1 .018 .989 1.006 S
0.625 1 .026 .983 1.009
0.780 1 .044 .971 1.015
0.875 1 .083 .944 1.028
1.000 1 .164 .891 1.066

-~ »

7L Re fse A, G /6,
(o] 1 .0501 .967 1.017
0.125 1 0501 . 967 1.017
0.260 1 .0602 .967%7 1.017
0.375 1 .0610 . 9686 1.01%7
0.500 1 .0650 .963 1.018
0.825 1 .0680 . .955 1.023
0.750 1 .1010 932 1.034
0.875 1 .1740 884 1.066 e
1.000 1 « 3180 .790 1.106
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TABLE XIII.- NORMAL STRESSES FOR BEAMS WITH LINEAR AND QUADRATIC THIOENESS TAPER.

x“/l F§7 ’;7 G(¥je)B, <3ﬁ¢b)/3}
0 ) 0 0 0
0.128 .126 .003 2123 .126
0.250 .250 .008 244 .263
0.375 376 017 .363 .381
0.500 «500 .035 «477 512
0.626 .625 .071 .578 .649
0.750 .750 o144 +654 798
0.875 .875 .324 .869 .583
1.000 1.000 .809 .594 1.203
L)
x*/1 Fis fo SOw /5, G(K )5,
) 1 2.070 -.380 1.690
0.126 i 1.268 .161 1.419
0.280 1 .799 .468 1.266
0.376 1 .536 .643 1.178
0.800 1 .389 741 1.130
0.686 1 .322 .786 1.107
0.750 1 .298 .801 1.099
0.875 1 . 377 749 1,126
1,000 1 .662 858 1.221
-
x*/1 Fig f30 S, 6O W)/
0 0 0 0 0
0.126 .125 .007 .121 127
0.260 .260 .016 .239 .258
0.375 . 378 .032 .354 .388
0.800 .800 .060 .460 .520
0.825 .626 <115 .549 .663
0.750 760 .220 .603 .823
0.875 875 .427 . 580 1,017
1.600 1.000 837 .442 1.279

TABLE XIV.- EFFEQTIVE SHREET WIDTH AT THE FIXED END OF A BEAM WITH SHEET-THICKNESS TAPER.

(=3l
X [ 27 E W
Vi s K fr (er),  VEE
[o] - 0 1 o]
0.075 24.922 163 .897 0.15
0.160 12.461 « 319 .809 .30
Q.226 §.307 . 467 «729 0.45
0.300 6.231 . 809 662 .60
0.375 4,384 742 .6504 .76
0.460 4,154 267 553 C.90
=3 w 7
I8 W welf 278 X
VEs:zc. 1 W F.n Q) (w )1: 32¢ L
[4] - R 1 (<2 .
0.0756 24,922 +166 .898 Q.15
0.160 12.481 « 332 801 0.30
0.226 8.307 .498 <715 C.45
C.300 8.231 .662 «638 , ¢.60
0.375 4.384 .806 676 e.75
0.450 4,154 . 048 519 0.90
1
vﬁiil! f: 0\ liﬁi) it x
326 L w 39 w /r 2§
0 - —— - 0 1 o]
0.0786 24.928 «239 .862 0.2256
0.15¢ 12.461 . 4568 735 0.450
0.22% 8.307 .B858 .640 0.675
0.300 6.231 «837 564 G.900

[ & |



TABLE XV.- EFFEQTIVE WIDTE AT THE SECTION OF MAXIMUM BENDIKG MOMENT FOR

NACA Technical Note No.893

BEAMS ON TWO SINGLE SUPPORTS.

\ﬁé_f_ (Wett /I rrms.
326 1 Care 4o Case 41 Cace 424 Case 42%
o] 1 1 1 1

0.15" .979 .982 .895 +863
0.30 «921 .932 .801 <743
0.45 .841 .866 715 .642
0.60 768 .71 +838 . 580
0.75 872 . 687 <571 +494
0.90 599 .512 «9513 .442

TABIE XVI.- NORMAL STRESSES FOR A BEAM WITH BOTH ENDS BUILT IN.

x/1 Fay3 & (x0) /5, T xW)/6

(o] -.50 -« 40 -, 55
0.2 - 44 -e34 -o48
C.4 =28 -a17 -.31
0.8 04 . 02
0.8 «48 « 38 «B0
0.9 o771 .48 «84
1.0 1.00 .44 1.28
%x/1 Fuq Gx/s, & (x)/6

) 0 ) )
0.2 .192 .102 .192
C.4 «384 » 382 « 385
0.6 .576 .559 .683
0.8 766 .705 .796
1.0 . 957 <745 1,082
x/1 GO Fusr lx,0¥/6, SOy
0 0 0 [o] .0
0.2 -.28 -.294 -.1968 -.343
0.4 -.50 -.529 - 347 -.620
0.8 - 38 -.403 -.187 -.508
0.8 .08 .024 .063 .010
0.9 .47 405 .138 .535
1.0 1.00 .928 «083 1.360

TABLE XVII.~ RELATIVE DECREASE IN EDGE MOMENT-01/(0p)eyen DUE TO SHEAR

- G:/Cgi )ehm.

Case 44 Case 45
r“’/l ™ =1 m=z2 m=2.5 ™oz

0 [¢] 0 0 Q
0.2 .09 .04 .02 07
Q.4 .27 +13 .06 : .24
0.5 .43 .21 210 .42
0.8 .55 27 .14 .57
1.0 .64 .32 .17 «56

LAG.

al
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Figure 3 (a to d).~ Stress diagrams showing effect of load
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Figure 5,~ Stress diagram for a2 beam with uniform cross
section carrying a combination of uniformly

distributed load and concentrated load at midspan.

[(1/w)(6 G/E)*/3_.7.5; m = 2.] . o
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Figure 10(a %o ¢).- Stress diagrams showing effects of taper in beam
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